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ABSTRACT 

 
While research consistently suggests siblings matter for individual outcomes, it remains unclear 

why.  At the same time, studies of genetic effects on health typically correlate genotype with the 

average level of a particular phenotype, ignoring more complicated genetic dynamics.  Using 

National Longitudinal Study of Adolescent Health data, we investigate whether sibling genotype 

moderates individual genetic expression.  We compare twin variation in health-related absences 

and self-rated health by genotype at three locations in the dopamine system – DRD2, DRD4, and 

DAT1 – to test sibship-level cross-person gene-gene interactions.  Results suggest effects of 

allelic variation at these loci are moderated by the meta-genomic environment of the sibship unit. 

Evidence of frequency dependent selection suggests much genetic research may violate the 

stable unit treatment value assumption. 
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INTRODUCTION 

Research consistently suggests that siblings matter for individual outcomes (Powell and 

Steelman 1990; Conley 2000; Steelman et al. 2002; Hauser and Wong 1999).  There is less 

consensus, however, about why siblings matter.  Disagreement focuses, for example, on whether 

the number, order, density, or gender of siblings is important, or if apparent effects are spurious 

(Steelman et al. 2002; Guo and VanWey 1999).   

The potential importance of siblings for genetic expression has received little attention.  

Recent developments in behavioral genetics suggest, however, that sibling characteristics could 

have important moderating effects on individual genetic expression.  Specifically, evidence of 

gene-environment interaction (Caspi et al. 2002, 2003) suggests that particular genotypes may 

only carry risk in certain contexts.  The diathesis-stress model, for example, suggests that certain 

alleles increase the risk of negative outcomes, conditional on exposure to environmental stress 

(Caspi et al. 2002, 2003; Guo, Roettger, and Cai 2008; Shanahan et al. 2008; Pescosolido et al. 

2008).  In contrast, the biological sensitivity to context hypothesis – also called the differential 

susceptibility model – suggests that rather than necessarily harming individual chances, these 

alleles make an individual more sensitive to context (Belsky 2013, 2005; Belsky and Pluess 

2009; Boyce and Ellis 2005; Ellis and Boyce 2008; Obradovic et al. 2010).   

According to both models, sibling characteristics may moderate effects of individual 

genotype.  To date, however, research on sibling effects has focused largely on social 

characteristics such as sibship size, order, or density.  Beyond sibling social characteristics, 

research has yet to investigate whether sibling genotype moderates individual genetic expression.  

Biological theory suggests this type of gene-gene interaction is possible – or even likely.  

Specifically, frequency dependent selection occurs when the frequency of a genotype in a 

population influences its fitness.  For example, Coetzee et al. (2007) find that women with more 
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common alleles at the human leucocyte antigen (HLA) gene have fewer illnesses (including cold 

and flu episodes) and have higher self-rated health than women with rare HLA alleles.  Thus, 

common HLA alleles appear to provide greater resistance to common or infectious pathogens 

and may therefore be subject to positive frequency dependent effects.1 

At the same time, however, other research investigating this immunological genotype 

finds that genes involved in the major histocompatibility complex (HLA in humans) may be 

subject to negative frequency dependent selection (e.g., Borghans et al. 2004; Trachtenberg et al. 

2003).  Rare alleles provide better protection from viruses or pathogens through improved 

immune responses, which Borghans et al. (2004) suggest helps account for the high degree of 

polymorphism among genes that encode for molecules in the major histocompatibility complex.  

According to this evidence, HLA alleles appear to be subject to negative frequency dependent 

selection, because rare alleles provide an advantage.    

Regardless of whether HLA is subject to positive or negative frequency dependent 

selection, the research outlined above suggests that the health implications of a genotype may be 

subject to the frequency of that genotype among those in the relevant environment, including 

among siblings in a given family.  Combining research on sibling effects and genetic sensitivity 

to context, this study asks whether gene-gene interaction effects on health exist within sibling 

pairs.  In other words, while we know that health outcomes are related to genotype (e.g., Erblich 

et al. 2005; Lerman et al. 1999), does the genotype-health relationship depend on sibling 

genotype?  This novel question expands our understanding of both sibling effects and the 

relationship between genes and environment.   

                                                 
1 Alternatively, the positive relationship between HLA allele frequency and health could be a sign that a particular 
allele has recently increased in frequency under selection for that particular allele. In that case, rather than positive 
frequency dependent selection, the advantage would come not from being common but from providing advantage at 
a moment in time. 
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If gene-gene interactions exist within sibling sets, they could help explain the high degree 

of sibling inequality (Conley 2004) as well as further question simplistic and deterministic 

claims about genetic effects (c.f., Herrnstein and Murray 1994).  Furthermore, gene-gene 

interactions within sibling sets would suggest non-independence of the units of analysis (i.e. 

violation of the Stable Unit Treatment Value Assumption or SUTVA) in much genetic research, 

with methodological implications for regression estimates of allelic effects as well as for 

variance decomposition methods used in classic heritability analysis.  Depending on how 

SUTVA is violated, it could result in attenuation bias in genome-wide risk score (or candidate 

gene) regressions and/or overestimation of heritability estimates for various phenotypes.  Thus, 

results of this analysis have potentially wide-reaching methodological implications.   

 

THEORETICAL AND EMPIRICAL BACKGROUND 

 Whether through intellectual climate (confluence theory), parental resources (resource 

dilution theory), or some other mechanism, there is consistent evidence that siblings matter for 

individual outcomes (Powell and Steelman 1990; Conley 2000; Steelman et al. 2002; Hauser and 

Wong 1999; Zajonc and Markus 1975).  Beyond the number, order, density, or gender of 

siblings, however, sibling genotype may also be important for individual outcomes.  

 

Candidate Genes 

The present study explores the possibility that the genes of those around us affect the 

expression of our own genotype through a candidate gene study on three well-known 

polymorphisms (genetic variants) at the DRD2, DRD4, and DAT1 genes.  All three of these 

polymorphisms are in the dopamine system, which plays an important role in a variety of 

behaviors related to general and self-perceived health.  For example, variation at DRD2, DRD4, 
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and DAT1 has been associated with smoking (Erblich et al. 2005), obesity (Guo et al. 2007), 

alcoholism withdrawal and relapse (Finckh et al. 1997), risky behavior (Guo et al. 2010) and 

sensation seeking (Derringer et al. 2010).  More details about each gene are provided below.     

At the D2 dopamine receptor gene locus (DRD2), a genetic variant known as the Taq1A 

polymorphism, also called the DRD2 A1 allele, is related to fewer dopamine receptor binding 

sites in the brain (Pohjalainen et al. 1998).  Compared to the A2 allele, possessing the A1 allele 

has been associated with anxiety, depression, novelty seeking, impulsiveness, lack of inhibition, 

and substance use (Lawford et al. 2006; Noble et al. 1998; Wiers et al. 1994; Blum et al. 1991; 

Bowirrat and Oscar-Berman 2005; Connor et al. 2007).  Furthermore, research finds that the 

consequences of carrying the A1 allele depend on context (DeLisi et al. 2009) and growing 

evidence suggests the A1 allele increases sensitivity to context (Mills-Koonce et al. 2007; 

Propper et al. 2008; Keltikangas-Jarvinen et al. 2007; see Belsky and Pluess 2009 for a 

comprehensive review).  Consistent with previous research, we treat the A1 allele as the sensitive 

genotype.   

The D4 dopamine receptor forms part of the neural signaling pathway for pleasure.  At 

the D4 dopamine receptor gene locus (DRD4), the long allele (with 6 to 10 repeats as opposed to 

fewer) has been linked with risk-taking (Kuhnen and Chiao 2009; Dreber et al. 2009), novelty 

seeking (Benjamin et al 1996; Ebstein et al. 1996), and greater risk of attention deficit 

hyperactivity disorder (ADHD) in humans (Brookes et al. 2006; McCracken et al. 2000).  

Research also suggests the long DRD4 allele increases sensitivity to context (Bakermans-

Kranenburg and van IJzendoorn 2006; Sheese et al. 2007; Bakermans-Kranenburg et al. 2008a, 

2008b).  Consistent with these studies, the long allele is considered the sensitive genotype here.   

The dopamine active transporter 1 (DAT1) gene has a polymorphic 40-base pair repeat 

which generally repeats 9 or 10 times.  The 10 repeat (10R) allele is the longer version of the 
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gene.  Guo, Roettger, and Cai (2008) find an association between the longer 10R allele and 

delinquent behavior.  The long DAT1 allele has also been associated with greater risk-taking 

(Mata et al. 2012), while the shorter DAT1 allele is associated with lower likelihood of smoking, 

particularly at early ages, and less novelty seeking (Lerman et al. 1999; Sabol et al. 1999).  In 

addition, research suggests DAT1 genotype is associated with differential sensitivity to context 

(van den Hoofdakker et al. 2012; Sonuga-Barke et al. 2009; Belsky and Beaver 2011).  We treat 

the long allele as the sensitive genotype.   

The gene-related behaviors and characteristics discussed above are directly or indirectly 

related to health.  Risk-taking and novelty seeking, for example, make smoking, alcohol and drug 

use, or even accidents more likely.  Anxiety and depression are related to stress and health, and 

possibly self-perceived health in particular.  DAT1, DRD2, and DRD4 genotype are therefore 

likely to be related to health. 

 

Genes and Environment 

Over the last decade, a growing body of research has suggested that certain human alleles 

can lead to deleterious behavioral phenotypes such as anti-social behavior, depression, smoking, 

obesity, risky behavior, and sensation seeking (Caspi et al. 2002, 2003; Erblich et al. 2005; Guo 

et al. 2007; Guo et al. 2010; Derringer et al. 2010).  This research suggests certain alleles at these 

genetic loci are related to potentially harmful behaviors and, therefore, poor health.   

Recently, however, research has found evidence of gene-environment interactions, with 

genetic effects conditional on environmental stressors, such as stressful life events (Caspi et al. 

2002, 2003).  More recently, the differential susceptibility model – also called the biological 

sensitivity to context hypothesis – suggests that certain genotypes are not necessarily negative, 

whether conditional on environment or not, but rather increase variation in outcomes depending 
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on environment (Belsky 2013, 2005; Belsky and Pluess 2009; Bakermans-Kranenburg et al. 

2008a, 2008b; Boyce and Ellis 2005; Ellis and Boyce 2008; Obradovic et al. 2010).  Thus, those 

with a particular genotype could experience more negative, but also more positive, outcomes 

than others given negative or positive environmental conditions.   

We take a novel approach in an effort to better understand the relationship between genes 

and environment.  Building on recent GxE research, we complicate the overly simplistic model 

of mean effects of genotype by asking whether these loci have effects on the average level of 

health that are contingent on the meta-genome—that is, on the distribution of genotypes around 

the individual.  Since the family unit is the key institution in allocating attention and resources to 

children, we look for a sibship-level gene-gene interaction as indicative of such a dynamic.  

Namely, we ask if the phenotype of an individual child depends not just on her allele at the 

DRD2, DRD4, or DAT1 loci, but if such effects are conditional on the genotype of her siblings 

at that same locus.2   

In evolutionary biology, frequency dependent selection involves variation in the selective 

value of a particular allele or genotype depending on its frequency in the population (Ayala and 

Campbell 1974).  In some contexts and among some species, carriers of a rare genetic variant 

experience a selective advantage.  In some flowering plant species, for example, carrying a 

genetic variant that produces a rare color can enhance reproductive fitness by attracting 

pollinators (Gigord et al. 2001).  The benefit of the rare color genotype, however, hinges on its 

remaining rare among the population.  Therefore, as its frequency increases, its benefits 

decrease, meaning in this case that the rare color genotype is subject to negative frequency 

dependent selection.  In other contexts, rarity confers a disadvantage.  Among a particular type of 

                                                 
2 Cross-loci, cross-individual interactions could be at work, too, but to avoid ad hoc testing, we constrain the present 
analysis to cross-sibling interaction effects at the same locus. 
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snails, for example, in populations where the frequency of two shell coiling directions is 

approximately equal, the snails in each subgroup enjoy equal reproductive changes (Johnson 

1982).  In populations where one subgroup is rare, however, those with the rare phenotype face a 

reproductive disadvantage, indicating the underlying rare genotype is subject to positive 

frequency dependent selection.  

As in the above examples, the consequences of carrying certain risky or sensitive alleles 

at the three dopaminergic genetic loci studied here could depend on their relative frequency in 

the family unit.  For example, it could be adaptive to have the putatively more sensation-seeking 

and attention-demanding long DRD4 alleles when one is the only offspring with two copies of 

this allele, thereby garnering more parental attention.  As with the classic prisoner’s dilemma 

game, the long allele may be advantageous if you are the only carrier, but disadvantageous if you 

are not.  In that case, the long DRD4 allele may be subject to negative frequency dependent 

selection.  Alternatively, having the long allele could be advantageous when all offspring have it 

(positive frequency dependent selection), but deleterious when only one child carries it if that 

child is stigmatized, for example.  Such an equilibrium might arise thanks to parent-offspring 

competition: When all offspring are emotionally demanding, it could pay off if parents are more 

likely to invest in existing children at the expense of future ones.  However, when only one is 

demanding, that child could be stigmatized and disinvested vis-à-vis other siblings.  Such a 

scenario would lead to an unstable equilibrium; because it is deleterious when rare but beneficial 

when common, the allele may be very slow to appear in a population but move to fixation 

quickly once it achieves a given threshold. 

Alternatively, frequency dependent selection could involve the family unit as a whole.  

As summarized by Ellis et al. (2011), the evolutionary model underlying the differential 

susceptibility hypothesis suggests the presence of some sensitive alleles within the family 
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amounts to hedging the reproductive bets of the family.  The future is unknown to both parents 

and children, but if the same childhood environment results in different outcomes depending on 

genotype, then having offspring with both sensitive and stable alleles at the DRD2, DRD4, and 

DAT1 loci could help increase the likelihood that at least some children will reproduce in the 

future.  Because the same childhood environment would encourage different outcomes, some of 

the family’s genes have a greater likelihood of being passed on regardless of what environment 

the future holds.  In this scenario, the sensitive alleles could be subject to positive or negative 

frequency dependent selection within the population of families.  On one hand, families carrying 

sensitive alleles could benefit when those alleles are rare among other families if their greater 

adaptability or flexibility allows a reproductive advantage in the context of environmental 

change.  On the other hand, families carrying sensitive alleles could benefit when those alleles 

are more common if the variety of outcomes among children is more normative and the 

potentially drastic differences from one’s siblings are perceived as less risky.  

Regardless of the direction, the genetic loci studied here may be subject to frequency 

dependent selection, consistent with the evolutionary model underlying the differential 

susceptibility model.  The specific neurotransmitter genes studied here are candidates for 

experiencing frequency dependent selection because they are associated with behaviors that have 

implications for reproductive chances, including smoking (Erblich et al. 2005), obesity (Guo et 

al. 2007), alcoholism withdrawal and relapse (Finckh et al. 1997), risky behavior (Guo et al. 

2010) and sensation seeking (Derringer et al. 2010).  In a context where risky behavior is 

common, for example, an allele associated with risky behavior or sensation seeking could 

increase the likelihood of accidents or death while providing little benefit, thereby reducing 

reproductive fitness.  In a context where risky behavior is rare, however, an allele associated with 

risky behavior could encourage innovation and provide reproductive benefits that outweigh the 



9 
 

risks.  Either within or between families, the fitness of each of the alleles studied here could 

confer varying advantage or disadvantage depending on the genetic context.  

Consistent with Freese’s (2008) “phenotypic bottleneck” argument, the likely mechanism 

for an interaction between individual and sibling genotype is sibling phenotype.  Having a very 

healthy sibling, for example, could enable an individual to be sickly or hypochondriacal (e.g., 

have frequent health-related absences from school).  The particular sibling phenotype of 

importance, however, is unknown.  That is, the mechanism through which sibling genotype 

moderates the individual genotype-health relationship could be sibling health, but could equally 

be sibling personality, thrill-seeking, academic achievement, or a complex combination of other 

phenotypes  Furthermore, sibling phenotype partially depends on genotype, which (within 

families) is randomly assigned at conception.  Therefore, genotype precedes phenotype and an 

interaction between individual and sibling genotype would illustrate a unique form of gene-

environment correlation. 

With this theoretical background in mind, we make the following hypothesis:  The 

phenotypic effect of an individual’s genotype is conditional on the genotype of her siblings at 

that same locus.   

 
 
METHODS 
 

The National Longitudinal Study of Adolescent Health (Harris 2009) provides sequenced 

genotype data for five genes, including three related to the dopamine system.  We focus on the 

third wave of panel data for sibling pairs, which surveyed respondents in 2001-2 when they were 

ages 18-26.3  Buccal swabs were collected in wave 3 from 2,612 of the 3,139 eligible siblings 

                                                 
3 Siblings of individuals identified as twins in the stratified (nationally representative) sample were added, yielding 
64% of sibling pairs from the probability sample and 36% from convenience sampling.  In other words, to increase 
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from wave 1 (a compliance rate of 83 per cent) for DNA sequencing at the Institute for 

Behavioral Genetics (Harris et al. 2006).   

The typical approach to testing gene-environment interaction effects has been to interact 

genotype by some measure of environment such as parenting style or socio-economic status 

(e.g., Guo et al. 2008; Shanahan et al. 2008).  This approach is problematic because non-random 

distribution of alleles in the population (population stratification) could be associated with 

environmental differences, which are actually driving the variation in the outcomes rather than 

the genetic differences.  In other words, the genetic effect could be spurious and a particular 

allele could be acting as proxy for ethnic background, region, religion or any number of other 

factors.   

Sibling analyses represent a modest advance over typical studies of gene-environment 

interaction effects.  Within full sibling pairs, each individual has an equal chance of inheriting 

one of two alleles from each parent.  Thus, while typical environment measures such as family 

meals or parental social capital may be a reflection of rather than a moderator of genotype 

(Conley and Rauscher 2014), sibling genotype may be correlated with but cannot be caused by 

individual genotype.   

While genotype within full sibling pairs is random, Add Health does not have 

information about parental genotype.  We are therefore unable to account for parental genetic 

differences across sibling pairs and cannot adequately address population stratification.  

However, sibling analyses address population stratification concerns more than typical analyses 

in the general population.  To further reduce concern, we limit our sample to white siblings.  

Finally, estimates of genotype effects among full siblings could be confounded with age or other 

                                                                                                                                                             
the number of pairs, some siblings were added after the random sampling strategy.  Sampling weights are therefore 
not available for sibling genetic data.   
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environmental differences.  We therefore limit this analysis to fraternal twins because they have 

a great deal of environmental similarity but do not have identical genomes.  Our sample includes 

123 fraternal twin pairs, based on genetically confirmed zygosity.4  Throughout the analyses, we 

exclude the set of fraternal triplets who appear in the data out of concern that relationships may 

differ.  Although twin analyses increase internal validity, they reduce external validity because 

the sibling interactions among twins may differ from those of most children.  To assess whether 

results among twins generalize to siblings in general, we conduct sensitivity analyses among all 

white full sibling pairs in Add Health.    

We focus on variation at three genetic loci in the dopamine system: DRD2, DRD4, and 

DAT1.  We specify these genotypes in multiple ways.  The number of putatively “risky” or 

sensitive alleles per individual and twin pair is measured to identify whether twin variation in 

health measures is sensitive to each additional sensitive allele.  We also test models in which 

twin pairs homozygous for (that is, with two copies of) the “risky” allele or homozygous for the 

“benign” allele are specified separately and compared to the other groups.  We show results from 

two of these approaches below, but results are similar using other specifications.  While some 

research (e.g., Dreber et al. 2009; Guo et al. 2007) specifies DRD4 alleles with 7 repeats, we 

include those with 6 to 10 repeats in the long allele category, leaving those with 2 through 5 

repeats in the short, “non-risky” category.  However, results are similar when specifying DRD4 

7R alleles. 

 Most research focuses on the relationship between dopamine genes and specific 

behavioral or health outcomes, such as smoking, obesity, alcoholism, risky behavior, and 

sensation seeking (Erblich et al. 2005; Guo et al. 2007; Finckh et al. 1997; Guo et al. 2010; 

                                                 
4 Monozygosity classification required complete matches on 11 “highly polymorphic, unlinked short tandem repeat 
(STR) markers: D1S1679, D2S1384, D3S1766, D4S1627, D6S1277, D7S1808, D8S1119, D9S301, D13S796, 
D15S652 and D20S481” and a sex chromosome identification marker (Harris et al. 2006:992). 
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Derringer et al. 2010).  These outcomes are all related to general health (Cherpitel 1999; 

Manderbacka et al. 1999), but less research has addressed the relationship between the genes we 

study and overall health measures.  Because our goal is to understand the relationship between 

these genotypes and overall health, we pass over the intermediary, specific health-related 

outcomes and examine effects on general health using two measures.  First, health-related 

absences are measured using a frequency score of how often an individual reports missing school 

or work due to health problems in the last month.  Answers range from zero (never) to four 

(every day), with a mean of about 0.2 (see Tables 1 and 2 for descriptive statistics).  Second, we 

create an indicator of self-rated health: individuals who rate their general health very good or 

excellent (about 75%).  Separate analyses using an indicator for those who report excellent 

health (about 34%) yield consistent results.   

In equation 1 below, i indexes individual fraternal twins.  Individual health is predicted 

by twin’s health (sibling phenotype), individual genotype, sibling genotype, and the interaction 

between the two, controlling for sex.  With a sample of 246 individual DZ (dizygotic or 

fraternal) twins, regressions are powered at 0.8 to detect an effect size of at least 0.03 at α=.05.  

We use Huber-White standard errors to adjust for family-level clustering. 

 
(1)     SexSibGen*GeneSibGenotypGenotypeSibHealthHealth i54321 iiiiii a εβββββ ++++++=

  
A concern is that these genetic markers may act as proxies for behavioral phenotypes 

which are difficult to measure.  For example, the long DRD4 allele could cause addictive 

behavior in siblings, reducing sibling health.  In that case, controlling for the allele in question 

and sibling health would result in multicollinearity and misestimate the model.  This issue, 

however, is common to molecular genetic association studies. 
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Table 1 provides descriptive information for individual fraternal twins.  Each individual 

in Table 1 would appear as both an individual and a sibling.  Therefore, the individual and 

sibling means would be identical (at the group but not the individual level) and sibling means are 

therefore not shown.     

 

RESULTS 

Table 2 shows mean health outcomes by individual and sibling genotype among white 

fraternal twins.  These descriptive statistics illustrate that – among individuals with the same 

genotype – phenotype varies by sibling genotype.  For example, among fraternal twins with no 

DRD2 A1 alleles, health absences average only 0.19 if their twin also has no A1 alleles.  

However, if their twin has one A1 allele, health absences average 0.25 days and 0.4 days if their 

twin has two A1 alleles.   

Although the mechanism of any interaction effect between individual and sibling 

genotype is likely phenotype (or some combination of phenotypes), an alternative possibility is 

that the effect actually reflects parental genotype.  In that case, sibling genotype could act as a 

rough proxy for parental genotype and an apparent interaction between individual and sibling 

genotype could reflect an interaction with parental genotype (via parental phenotype).  

Unfortunately, we do not have information on parental genotype.  However, such a scenario 

would still suggest that the effect of individual genotype depends on the genotype of those in the 

environment.  Nevertheless, in an attempt to indirectly address this possibility, Table 3 shows the 

distribution of parental characteristics (education, unemployment status, self-rated very good 

health, frequency of alcohol use, and reported happiness) by combined sibling genotype (the 

sibling pair total number of sensitive alleles at each genetic locus).  With only a few exceptions 

(for biological father’s education and happiness in Panel B), there is not a linear relationship 
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between parental characteristics and the distribution of sibling pair genotype.  In general, 

therefore, Table 3 suggests that parental characteristics are not linearly related to sibling pair 

genotype, which reduces the likelihood that sibling genotype is simply acting as a proxy for 

parental phenotype or genotype. 

Table 4 presents results from regressions which check whether the differences in 

individual health by sibling genotype are statistically significant, controlling for sex and sibling 

phenotype.  We find some evidence to support frequency dependent effects.  Individual fraternal 

twins with two copies of the long DAT1 allele report significantly fewer health-related absences, 

but only if their twin does not also carry two copies of the long DAT1 allele (p<.10).  As 

illustrated in Figure 1, the health implications of DAT1 genotype seem to depend on sibling 

DAT1 genotype.  Similarly, fraternal twins report fewer health absences if they or their twin 

have two copies of the long DRD4 allele, but significantly more health absences if they both do.  

These findings suggest that, while the long DRD4 and DAT1 genotype may be associated with 

better health individually, when one’s sibling shares the same genotype it can yield significantly 

poorer health.   

When predicting very good health, individuals are more likely to report very good health 

if they have two copies of the long DRD4 allele or if their sibling has this genotype.  If both the 

individual and the sibling share an alternative DRD4 genotype, however, individuals are less 

likely to report very good health.  This relationship is shown in Figure 2.  This finding suggests 

that the long DRD4 genotype may be associated with better health whether carried by the 

individual or the sibling. 

When the number of long DRD4 alleles is specified continuously, we find that having 

additional long alleles at the DRD4 locus has no significant independent effect.  When 

considered in context with sibling DRD4 genotype, however, long alleles are associated with a 
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greater likelihood of very good health as the number of long sibling alleles increases (Figure 3).  

Thus, if one’s sibling has no long DRD4 alleles, additional long DRD4 alleles do not 

significantly change the likelihood of reporting very good health.  If one’s sibling has two long 

alleles, however, each additional long DRD4 allele increases the likelihood of reporting very 

good health.  Specifying number of long DRD4 alleles continuously, therefore, suggests the long 

DRD4 genotype may be associated with better health, but only if one’s sibling shares the same 

genotype. 

Sibling phenotype could partially mediate the interaction effect between individual and 

sibling genotype.  To assess the extent to which sibling self-rated health explains the pattern we 

find, we conduct a path analysis of Model 4B in Table 4.  The resulting path diagram is 

presented in Figure S1 in the Appendix.  The standardized path coefficients illustrate that sibling 

self-rated health does not mediate the interaction between individual and sibling DRD4 

genotype.  Nevertheless, a complex combination of other sibling phenotypes could still constitute 

the pathway through which sibling genotype moderates the effect of individual genotype.  Given 

the potential complexity, identification of the mechanism is beyond the scope of this analysis. 

Finally, consistent with the results for DRD4, an individual fraternal twin is slightly less 

likely to rate her health as very good if she or her sibling has two copies of the DRD2 A1 allele.  

However, if both twins have two A1 alleles, she is significantly more likely to report very good 

health.  Thus, having two copies of the DRD2 A1 allele is associated with very good health, but 

only if one’s sibling shares the same genotype.   

To summarize results in Table 4, holding two copies of the long DAT1 or DRD4 allele is 

associated with fewer health-related absences, but only if one’s twin does not carry the same 

genotype.  When predicting very good health, however, long DRD4 alleles and DRD2 A1 alleles 

may be associated with better health, but only if one’s sibling does carry the same genotype.  In 
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both cases, there is evidence that the relationship between individual genotype and health varies 

by sibling genotype.  In the case of DRD4, however, the implications of sibling genotype seem 

to differ by outcome.   

The differences by outcome could reflect the specific measures used here: health 

absences and self-rated very good health.  The putatively more sensation-seeking and attention-

demanding long DRD4 alleles may garner enough parental resources to reduce health absences, 

but only when one’s twin does not also have two copies of this allele.  As with the classic 

prisoner’s dilemma game, the long allele may be advantageous (reducing health absences) if you 

are the only carrier, but disadvantageous if you are not.   

At the same time, however, carrying the long allele could be advantageous (for relatively 

more common outcomes such as self-rated very good health) when all offspring have it, but 

deleterious when only one child carries it.  For less exceptional outcomes such as very good 

health, the long DRD4 allele may be subject to positive frequency dependent selection.  While 

speculative at this point, such a scenario of positive frequency dependent selection for some 

outcomes and negative selection for others could help explain why these putatively 

disadvantageous alleles have reached equilibrium in the population. 

Table 5 includes results from the same regressions as Table 4, but limited to same sex 

fraternal twins.  With a few exceptions, results are similar when limited to same sex twins.  The 

individual and sibling gene-gene interaction does not reach significance when specifying number 

of long DRD4 genotypes, predicting very good health with an indicator for two copies of the 

long DRD4 genotypes, or predicting health absences with an indicator for two copies of the long 

DRD4 allele.  In general, however, the relationship between health and individual genotype 

varies by twin genotype regardless of the sex of one’s fraternal twin. 
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To assess whether results generalize beyond twins to singleton siblings, we conduct 

sensitivity analyses among white full sibling pairs.  Results presented in Table S1 of the 

Appendix provide some additional evidence that the effects of individual genotype are 

moderated by sibling genotype and generalize beyond twins to siblings.   

 

DISCUSSION 

Our results are consistent with the hypothesis that the effects of allelic variation at three 

genetic loci are moderated by the genetic environment of the sibship unit.  We had predicted that, 

from a parental investment point of view, it might be advantageous to have the putatively more 

sensation-seeking and attention-demanding alleles when one is the only offspring to be 

homozygous for this allele, thereby garnering more parental attention.  We found evidence of 

this dynamic for long DRD4 and DAT1 alleles, but only when predicting health-related 

absences.  For the DRD2 A1 allele – and when specifying the number of long DRD4 alleles 

linearly – we found evidence of the opposite sort of interaction effect:  When one has the “risky” 

alleles, it is more disadvantageous to be the only one in the brood with this genotype.  In other 

words, the sole sensation-seeking offspring may be stigmatized and isolated, which in turn, could 

lead to poorer health.  Such a scenario could reflect the different outcomes studied and suggests 

the possibility that it is not frequency dependent selection (i.e. fitness advantage) that is at work, 

but rather some cross-individual pleiotropic effect (on multiple phenotypes) that may be operant 

within the social network of the family household. 

Regardless of the direction of effects or the underlying mechanism, however, if the 

behavioral phenotype of an individual is not just contingent on her own genotype but that of her 

siblings, then it suggests non-independence of the units of analysis (i.e. violation of the Stable 

Unit Treatment Value Assumption) in much genetic research of human behavior.  The non-
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independence of sibling genotypes has implications for models that include molecular markers as 

covariates (investigating allelic or gene-environment interaction effects) and for those that use 

variance decomposition methods to generate estimates, as in classic heritability analysis.  In fact, 

this non-independence may help explain why classic additive heritability estimates cannot be 

replicated (or even approached) by GWAS studies that regress phenotypes against all known 

polymorphic loci.  Namely, depending on how SUTVA is violated, it could result in attenuation 

bias in genome-wide marker regressions and/or overestimation of MZ-DZ differences in intra-

class correlations for given phenotypes.  Such biases could question the reliability of heritability 

estimates based on twins and introduce much unobserved heterogeneity to models predicting 

effects of a particular allele.  These possibilities should be explored by future researchers with 

genome-wide data. 

More broadly, our results suggest the importance of moving beyond average treatment 

effects to investigate a potentially more complex relationship between genes and health.  The 

findings outlined above suggest that, not only are genetic effects dependent on context, they are 

dependent on genetic context – or the genes of our siblings.  While the specific genes and 

outcomes investigated here may have limited potential to understand within-family dynamics, 

our results suggest that sibling gene-gene interactions could help explain the high degree of 

inequality among siblings within the same family (Conley 2004).   

Finally, while research on sibling effects has focused largely on social characteristics, our 

findings suggest that sibling genotype can also carry important implications for individual 

outcomes and, in fact, moderates individual genetic expression.  This paper thus expands the 

research on sibling effects to incorporate genetics.  If future research supports our findings, it 

could expand social and medical focus from individual genotype to the genetic makeup of a 

larger social unit, such as the family. 
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These implications are highly speculative at this point, given the limitations of this 

particular analysis.  Limitations include the lack of parental genotype data and relatively small 

number of sibling pairs.  In addition, sibling genotype could act as a proxy for parental genotype.  

If parents are homozygous for the sensitive genotype, sibling genotype cannot differ.  In that 

case, the apparent effect of sibling genotype could reflect a different within-family dynamic.  

Also, absent parental genotype controls, alleles could be non-randomly distributed across 

environments.  That is, conditional on a given individual’s genotype, the genotype of his/her 

sibling may be reflecting not just random assignment inherent to allele recombination and 

segregation but also population differences in frequencies.  Future research should seek to 

replicate our findings using datasets that have measured parental genotype in addition to sibling 

genotype. 

Despite these limitations, however, we believe the ideas and findings presented here 

should at least open this avenue of research to those interested in exploring how genetic variation 

affects health.  It is possible, for example, that the non-independence of individual genotypes or 

the genetic effect on phenotypic variation is limited to the three genes in the dopamine system 

studied here.  We do not have any reason to believe this is the case, because these genes are not 

extraordinary.  However, future research should investigate potentially similar effects of other 

candidate genes that may have health implications.  Similarly, while this study offers some 

evidence of effects for self-rated health and health absences, future research could investigate 

whether genetic effects and non-independence are relevant for other health and behavioral 

outcomes.  Such research can take advantage of genome-wide data to address these questions – 

ideally incorporating parental genetic data as well.  Additionally, in all of these potential studies, 

evidence found here suggests that we should address potential SUTVA violations when 

investigating genetic effects.  All said, a much more complicated view of how genotypes interact 
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with the environment and with each other must suffuse empirical models if a complete 

understanding of genetics is to be fully realized.     



21 
 

REFERENCES 
 
Ayala, Francisco, J. and Cathryn A. Campbell. 1974. “Frequency-Dependent Selection.” Annual 

Review of Ecology and Systematics 5: 115-138. 
Bakermans-Kranenburg, M.J., and M.H. van IJzendoorn. 2006. “Gene– environment interaction 

of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting 
externalizing behavior in preschoolers.” Developmental Psychobiology 48: 406-9.  

Bakermans-Kranenburg, M.J., M.H. van IJzendoorn, J. Mesman, L.R. Alink, and F. Juffer. 
2008a. “Effects of an attachment-based intervention on daily cortisol moderated by dopamine 
receptor D4: A randomized control trial on 1- to 3-year-olds screened for externalizing 
behavior.” Development and Psychopathology 20: 805–820. 

Bakermans-Kranenburg, Marian J., Marinus H. Van IJzendoorn, Femke T.A. Pijlman, Judi 
Mesman, and Femmie Juffer. 2008b. “Experimental Evidence for Differential Susceptibility: 
Dopamine D4 Receptor Polymorphism (DRD4 VNTR) Moderates Intervention Effects on 
Toddlers’ Externalizing Behavior in a Randomized Controlled Trial.” Developmental 
Psychology 44(1): 293-300. 

Belsky, Jay. 2013. “Differential Susceptibility to Environmental Influences.” International 
Journal of Child Care and Education Policy 7(2): 15-31. 

Belsky, Jay. 2005. “Differential susceptibility to rearing influence: An evolutionary hypothesis 
and some evidence.” In B. Ellis & D. Bjorklund (Eds.), Origins of the social mind: 
Evolutionary psychology and child development (pp. 139–163). New York: Guilford.  

Belsky, Jay and Kevin M. Beaver. 2011. “Cumulative-genetic plasticity, parenting and 
adolescent self-regulation.” Journal of Child Psychology and Psychiatry 52(5): 619-26. 

Belsky, Jay, and Michael Pluess. 2009. “Beyond Diathesis-Stress: Differential Susceptibility to 
Environmental Influences.” Psychological Bulletin 135(6): 885-908.  

Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., Hamer, D. H. 
1996. “Population and familial association between the D4 dopamine receptor gene and 
measures of novelty seeking.” Nature Genetics 12: 81-4. 

Blum, Kenneth, Ernest P. Noble, Peter J. Sheridan, Olivia Finley, Anne Montgomery, Terry 
Ritchie, Tulin Ozkaragoz, Robert J. Fitch, Frank Sadlack, Donald Sheffield, Tommie 
Dahlmann, Sheryl Halbardier, and Harou Nogami. 1991. “Association of the A1 Allele of the 
D2 Dopamine Receptor Gene with Severe Alcoholism.” Alcohol 8(5): 409-16. 

Borghans, Jose A.M., Joost B. Beltman, Rob J. De Boer. 2004. “MHC Polymorphism under 
Host-Pathogen Coevolution.” Immunogenetics 55:732-739. 

Bowirrat, A. and M. Oscar-Berman. 2005. “Relationship between dopaminergic 
neurotransmission, alcoholism, and reward deficiency syndrome.” American Journal of 
Medical Genetics; Part B, Neuropsychiatric Genetics 132: 29-37. 

Boyce, W.T. and B.J. Ellis. 2005. “Biological Sensitivity to Context: I. An Evolutionary-
Developmental Theory of the Origins and Functions of Stress Reactivity.” Development and 
Psychopathology 17: 271-301. 

Brookes et al. 2006.  “The analysis of 51 genes in DSM-IV combined type attention deficit 
hyperactivity disorder: association signals in DRD4, DAT1, and 16 other genes.”  Molecular 
Psychiatry 11: 934-953. 

Caspi, A. et al. 2002.  “Role of Genotype in the Cycle of Violence in Maltreated Children.”  
Science 297: 851-854. 

Caspi, A. et al. 2003.  “Influence of Life Stress on Depression: Moderation by a Polymorphism 
in the 5-HTT Gene.”  Science 297:851-854. 



22 
 

Caspi, A. et al. 2010. “Genetic Sensitivity to the Environment: The Case of the Serotonin 
Transporter Gene and Its Implications for Studying Complex Diseases and Traits.” American 
Journal of Psychiatry 167:509-527.  

Cherpitel, C.J. 1999. “Substance Use, Injury, and Risk-Taking Dispositions in the General 
Population.” Alcoholism 23(1):121-126. 

Coetzee, Vinet, Louise Barret, Jaco M. Greeff, S. Peter Henzi, David I. Perrett, Ahmed A. 
Wadee. 2007. “Common HLA Alleles Associated with Health, but Not with Facial 
Attractiveness.” PLoS One 2(7):e640. 

Conley, Dalton. 2004. The Pecking Order: Which Siblings Succeed and Why. New York: 
Pantheon Books. 

Conley, Dalton. 2000. “Sibship Sex Composition: Effects on Educational Attainment.” Social 
Science Research. 29(3): 441-457. 

Conley, Dalton and Emily Rauscher. 2014. “Genetic Interactions with Prenatal Social 
Environment: Effects on Academic and Behavioral Outcomes.” Journal of Health and Social 
Behavior 54(1): 109-127.   

Connor, Jason P., Ross Young, Bruce R. Lawford, John B. Saunders, Terry L. Ritchie, and 
Ernest P. Noble. 2007. “Heavy nicotine and alcohol use in alcohol dependence is associated 
with D2 dopamine receptor (DRD2) polymorphism.” Addictive Behaviors 32(2): 310-9. 

Daw, Jonathan, Michael Shanahan, Kathleen Mullan Harris, Andrew Smolen, Brett Haberstick, 
and Jason D. Boardman. 2013. “Genetic Antecedents to Environmental Sensitivity: 5HTT, 
Smoking, and Alcohol Consumption.” Journal of Health & Social Behavior 54(1):92-108. 

DeLisi, Matt, Kevin M. Beaver, Michael G. Vaughn, and John Paul Wright. 2009. “All in the 
family: Gene x environment interaction between DRD2 and criminal father is associated with 
five antisocial phenotypes.” Criminal Justice and Behavior 36(11): 1187-97. 

Derringer, J., Krueger, R.F., Dick, D.M., Saccone, S., Grucza, R.A., Agrawal, A., Lin, P., 
Almasy, L., Edenberg, H.J., Foroud, T., Nurnberger, Jr., J.I., Hesselbrock, V.M., Kramer, 
J.R., Kuperman, S., Porjesz, B., Schuckit, M.A., & Bierut, L.J. 2010. “Predicting Sensation 
Seeking from Dopamine Genes: A Candidate-System Approach.” Psychological Science 
21(9):1282-1290. 

Dreber, A., Apicella, C. L., Eisenberg, D. T. A., Garcia, J. R., Zamore, R. S., Lum, J. K., 
Campbell, B. 2009. “The 7R polymorphism in the dopamine receptor D4 gene (DRD4) is 
associated with financial risk taking in men.” Evolution and Human Behavavior 30: 85-92. 

Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D., Bennett, E. R., 
Nemanov, L., Katz, M., Belmaker, R. H. 1996. “Dopamine D4 receptor (D4DR) exon III 
polymorphism associated with the human personality trait of novelty seeking.” Nature 
Genetics 12: 78-80. 

Ellis, B. J. and W. T. Boyce. 2008. “Biological Sensitivity to Context.” Current Directions in 
Psychological Science 17: 183-7. 

Erblich, J., Lerman, C., Self, D.W., Diaz, G.A., & Bovbjerg, D.H. 2005. “Effects of dopamine 
D2 receptor (DRD2) and transporter (SLC6A3) polymorphisms on smoking cue-induced 
cigarette craving among African-American smokers.” Molecular Psychiatry 10:407–414. 

Finckh, U., Rommelspacher, H., Kuhn, S., Dufeu, P., Otto, G., Heinz, A., Dettling, M., 
Velasquez, M.G., Pelz, J., Graf, K.J., Harms, H., Sander, T., Schmidt, L.G., & Rolfs, A. 
1997. “Influence of the dopamine D2 receptor (DRD2) genotype on neuroadaptive effects of 
alcohol and the clinical outcome of alcoholism.” Pharmacogenetics and Genomics 7(4):255-
344. 

http://www.nber.org/papers/w16026
http://www.nber.org/papers/w16026


23 
 

Freese, Jeremy. 2008. “Genetics and the social science explanation of individual 
outcomes.” American Journal of Sociology 114(S1): S1–S35. 

Gigord, Luc D.B., Mark R. Macnair, and Ann Smithson. 2001. “Negative frequency-dependent 
selection maintains a dramatic flower color polymorphism in the rewardless orchid 
Dactylorhiza sambucina (L.) Soo.” Proceedings of the National Academy of Sciences 98(11): 
6253-55. 

Guo, G., North, K.E., Gordon-Larsen, P., Bulik, C.M., & Choi, S. 2007. “Body Mass, DRD4, 
Physical Activity, Sedentary Behavior, and Family Socioeconomic Status: The Add Health 
Study.” Obesity 15:1199-1206. 

Guo, G., Cai, T., Guo, R., Wang, H., & Harris, K.M. 2010. “The Dopamine Transporter Gene, a 
Spectrum of Most Common Risky Behaviors, and the Legal Status of the Behaviors.” PLoS 
One 5(2):e9352.  

Guo, Guang, Michael E. Roettger and Tianji Cai. 2008.  “The Interaction of Genetic Propensities 
into Social-Control Models of Delinquency and Violence among Male Youths.”  American 
Sociological Review 73: 543-568. 

Guo, Guang and Leah K. VanWey. 1999. “Sibship Size and Intellectual Development: Is the 
Relationship Causal?” American Sociological Review, 64: 169-187. 

Harris, K.M. 2009. The National Longitudinal Study of Adolescent Health (Add Health), Waves 
I & II, 1994–1996; Wave III, 2001–2002 [machine-readable data file and documentation]. 
Chapel Hill, NC: Carolina Population Center, University of North Carolina at Chapel Hill. 

Harris, K.M., C.T. Halpern, A. Smolen, and B.C. Haberstick. 2006. “The National Longitudinal 
Study of Adolescent Health (Add Health) Twin Data.” Twin Research and Human Genetics 
9(6):998-997. 

Hauser, Robert, and R. Wong. 1989. “Sibling Resemblance and Intersibling Effects in 
Educational Attainment.” Sociology of Education 62:149-71.  

Herrnstein, Richard J. and Charles Murray. 1994. The Bell Curve: Intelligence and Class 
Structure in American Life. New York: Free Press. 

Johnson, Michael S. 1982. “Polymorphism for direction of coil in Partula suturalis: Behavioural 
isolation and positive frequency dependent selection.” Heredity 49: 145-51. 

Keltikangas-Jarvinen, L., M. Elovainio, M. Kivimaki, O.T. Raitakari, J.S. Viikari, and T. 
Lehtimaki. 2007. “Dopamine receptor D2 gene Taq1A (C32806T) polymorphism modifies 
the relationship between birth weight and educational attainment in adulthood: 21-year 
follow-up of the Cardiovascular Risk in Young Finns Study.” Pediatrics 120: 756-61. 

Kuhnen, C. M. and J.Y. Chiao. 2009. Genetic determinants of financial risk taking. PLoS One 4: 
e4362.  

Lawford, Bruce R., Ross Young, Ernest P. Noble, Burnett Kann, and Terry Ritchie. 2006. “The 
D-2 Dopamine Receptor (DRD2) Gene Is Associated with Co-Morbid Depression, Anxiety 
and Social Dysfunction in Untreated Veterans with Post-Traumatic Stress Disorder.” 
European Psychiatry 21(3): 180-5. 

Lerman, C., Caporaso, N. E., Audrain, J., Main, D., Bowman, E. D., Lockshin, B., Boyd, N. R., 
Shields, P. G. 1999. “Evidence suggesting the role of specific genetic factors in cigarette 
smoking.” Health Psychology 18: 14-20.  

Manderbacka, K., Lundberg, O., & Martikainen, P. 1999. “Do Risk Factors and Health 
Behaviours Contribute to Self-Ratings of Health?” Social Science and Medicine 
48(12):1713-1720.  

http://www.sociology.northwestern.edu/people/faculty/documents/DA100d01.pdf
http://www.sociology.northwestern.edu/people/faculty/documents/DA100d01.pdf


24 
 

Mata, R., R. Hau, A. Papassotiropoulos, and R. Hertwig. 2012. “DAT1 Polymorphism Is 
Associated with Risk Taking in the Balloon Analogue Risk Task (BART).” PLoS ONE 7(6): 
e39135.  

McCracken, J.T., S.L. Smalley, J.J. McGough, L. Crawford, M. Del’Homme, R.M. Cantor, A. 
Liu, S.F. Nelson. 2000. “Evidence for linkage of a tandem duplication polymorphism 
upstream of the dopamine D4 receptor gene (DRD4) with attention deficit hyperactivity 
disorder (ADHD). Molecular Psychiatry 5(5): 531-6. 

Mills-Koonce, W.R., C.B. Propper, J.L. Gariepy, C. Blair, P. Garrett-Peters, and M.J. Cox. 2007. 
“Bidirectional genetic and environmental influences on mother and child behavior: The 
family as the unit of analyses.” Development and Psychopathology 19: 1073-87. 

Noble, Ernest P., Tulin Z. Ozkaragoz, Terry L. Ritchie, Xuxian Zhang, Thomas R. Belin, and 
Robert S. Sparkes. 1998. “D2 and D4 Dopamine Receptor Polymorphisms and Personality.” 
American Journal of Medical Genetics: Neuropsychiatric Genetics 81:254-67. 

Obradovic, J., N.R. Bush, J. Stamperdahl, Nancy E. Adler, W. Thomas Boyce. 2010. “Biological 
Sensitivity to Context: The Interactive Effects of Stress Reactivity and Family Adversity on 
Socioemotional Behavior and School Readiness.” Child Development 81:270-89. 

Pohjalainen, T., Rinne, J. O., Någren, K., Lehikoinen, P., Anttila, K., Syvälahti, E., Hietala, J. 
1998. “The A1 Allele of the Human D2 Dopamine Receptor Gene Predicts Low D2 Receptor 
Availability in Healthy Volunteers.” Molecular Psychiatry 3:256-60. 

Powell, Brian and Lala Carr Steelman. 1990. “Beyond Sibship Size: Sibling Density, Sex 
Composition, and Educational Outcomes.” Social Forces. 69(1): 181-206. 

Propper, C. G.A. Moore, W.R. Mills-Koonce, C.T. Halpern, A.L. Hill-Soderlund, S.D. Calkins et 
al. 2008. “Gene-environment contributions to the development of infant vagal reactivity: The 
interaction of dopamine and maternal sensitivity.” Child Development 79: 1377-94. 

Risch, N., Herrell, R., Lehner, T., et al. 2009. “A Meta-analysis: Interaction Between the 
Serotonin Transporter Gene (5-HTTLPR), Stressful Life Events, and Risk of Depression.” 
JAMA 301:2462-2471. 

Sabol, S. Z., Nelson, M. L., Fisher, C., Gunzerath, L., Brody, C. L., Hu, S., Sirota, L. A., Marcus, 
S. E., Greenberg, B. D., Lucas, F. R., IV, Benjamin, J., Murphy, D. L., Hamer, D. H. 1999. 
“A genetic association for cigarette smoking behavior.” Health Psychology 18: 7-13.  

Sheese, B.E., P.M. Voelker, M.K. Rothbart, and M.I. Posner. 2007. “Parenting quality interacts 
with genetic variation in dopamine receptor D4 to influence temperament in early 
childhood.” Development and Psychopathology 19: 1039-46. 

Sonuga-Barke, E.J., R.D. Oades, L. Psychogiou, W. Chen, B. Franke, J. Buitelaar et al. 2009. 
“Dopamine and serotonin transporter genotypes moderate sensitivity to maternal expressed 
emotion: The case of conduct and emotional problems in attention deficit/hyperactivity 
disorder.” Journal of Child Psychology and Psychiatry 80(9): 1052-63. 

Steelman, Lala Carr, Brian Powell, Regina Werum, and Scott Carter. 2002. “Reconsidering the 
Effects of Sibling Configuration: Recent Advances and Challenges.” Annual Review of 
Sociology. 28: 243-69. 

Trachtenberg, E., B. Korber, C. Sollars, T.B. Kepler, P.T. Hraber, E. Hayes, R. Funkhouser, M. 
Fugate, J. Theiler, Y.S. Hsu, K. Kunstman, S. Wu, J. Phair, H. Erlich, and S. Wolinsky. 
2003. “Advantage of rare HLA supertype in HIV disease progression.” Nature Medicine 
9:928-35. 

van den Hoofdakker, Barbara J., Maaike H. Nauta, D.A. janneke Dijck-Brouwer, Lianne van der 
Veen-Mulders, Sjoerd Sytema, Paul M.G. Emmelkamp, Ruud B. Minderaa, and Pieter J. 



25 
 

Hoekstra. 2012. “Dopamine transporter gene moderates response to behavioral parent 
training in children with ADHD: A pilot study.” Developmental Psychology 48(2): 567-74. 

Wiers, R.W., J.A. Sergeant, and W.B. Gunning. 1994. “Psychological Mechanisms of Enhanced 
Risk of Addiction in Children of Alcoholics: A Dual Pathway?” Acta Paediatrica 
Supplement 404:9-13. 

Zajonc, R.B. and G.B. Markus. 1975. “Birth order and intellectual development.” Psychological 
Review 82(1):74–88. 

 

 
  



26 
 

TABLES 
Table 1: Descriptive Statistics – White Fraternal Twins with Complete Individual and Sibling Data 
  Mean Std. Dev. 
Health Absences 0.20 0.41 
Very Good Health 0.75 0.43 
DRD2 A1/A1 * 0.05 0.21 
DRD2 # A1 alleles * 0.42 0.58 
DRD4 6-10R/6-10R 0.04 0.20 
DRD4 # 6-10R alleles 0.36 0.56 
DAT1 10R/10R 0.60 0.49 
DAT1 # 10R alleles 1.53 0.62 
Male 0.54 0.50 
N 246   

* N = 244 
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Table 2: Mean Individual Phenotype by Sibling Genotype – White Fraternal Twins 
  Health Absences Very Good Health N 
DRD2 no A1 Alleles 

  
  

   Sib 0 A1 alleles 0.19 0.78 149 
   Sib 1 A1 0.25 0.70 77 
   Sib 2 A1 0.40 0.60 5 
DRD4 no 6-10R 

      Sib 0 6-10R 0.20 0.76 167 
   Sib 1 6-10R 0.21 0.67 63 
   Sib 2 6-10R 0.00 1.00 4 
DAT1 both 10R 

      Sib 0 10R 0.00 1.00 2 
   Sib 1 10R 0.00 0.74 23 
   Sib 2 10R 0.21 0.72 122 
DAT1 no 10R 

      Sib 0 10R 0.21 0.93 14 
   Sib 1 10R 0.25 0.80 60 
   Sib 2 0R 0.24 0.68 25 
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Table 3: Parental Characteristics by Sibling Pair Genotype 
Panel A: Biological Mother 

    Education Unemployed 
Very Good 

Health 
Alcohol 

Frequency Happy N 
DRD2 A1 Alleles 

     
  

  0 13.39 0.07 0.61 1.17 0.98 115 
  1 13.33 0.00 0.56 1.56 1.00 40 
  2 12.04 0.00 0.44 1.04 0.92 53 
  3+ 13.33 0.00 0.75 1.42 1.00 12 
DRD4 6-10R Alleles 

     
  

  0 13.22 0.05 0.54 1.20 0.95 119 
  1 12.92 0.04 0.62 1.45 1.00 52 
  2 12.97 0.00 0.45 0.97 1.00 35 
  3+ 12.29 0.00 0.86 1.14 1.00 14 
DAT1 10R Alleles 

     
  

  <2 11.90 0.00 0.30 1.30 1.00 20 
  2 13.15 0.05 0.67 1.81 1.00 46 
  3 13.10 0.05 0.71 1.12 1.00 41 
  4 13.19 0.04 0.52 1.00 0.94 113 

 
Panel B: Biological Father 

    Education Unemployed 
Very Good 

Health 
Alcohol 

Frequency Happy N 
DRD2 A1 Alleles 

     
  

  0 13.67 0.00 0.73 1.66 0.99 110 
  1 13.55 0.00 0.78 2.15 0.96 31 
  2 12.93 0.00 0.25 2.19 0.86 44 
  3+ 10.75 0.00 0.25 0.50 1.00 8 
DRD4 6-10R Alleles 

     
  

  0 13.38 0.00 0.62 2.01 0.94 102 
  1 13.10 0.00 0.53 1.55 0.97 50 
  2 14.03 0.00 0.78 1.56 1.00 29 
  3+ 12.67 0.00 0.60 1.40 1.00 12 
DAT1 10R Alleles 

     
  

  <2 12.78 0.00 0.50 2.50 1.00 18 
  2 13.05 0.00 0.55 2.13 0.90 41 
  3 13.52 0.00 0.71 1.63 1.00 33 
  4 13.54 0.00 0.62 1.67 0.96 101 

Includes white fraternal twins with complete individual, sibling, and parent data. 
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Table 4: Coefficients from Models Investigating Individual-Sibling Genotype Interaction among 
White Fraternal Twins 
  Health-Related 

Absences 
A 

Self-Rated 
Very Good Health 

B 

 

  
Model 

Sibling Phenotype 0.01  0.01    
DRD2 A1/A1 -0.23 * -0.15   1 
Sibling DRD2 A1/A1 0.15  -0.14    
A1/A1 * Sibling A1/A1 0.01  0.54 * N = 244 
Sibling Phenotype 0.00  0.02    
DRD2 #A1 alleles -0.06  -0.01   2 
Sibling DRD2 #A1 alleles 0.02  -0.07    
#A1 * Sibling #A1 0.05  0.03   N = 244 
Sibling Phenotype 0.01  -0.01    
DRD4 6-10R/6-10R -0.20 * 0.27 * 3 
Sibling DRD4 6-10R/6-10R -0.20 * 0.27 *  
6-10R/6-10R * Sibling 6-10R/6-10R 0.51 * -0.26 * N = 246 
Sibling Phenotype 0.02  -0.01    
DRD4 #6-10R alleles -0.11 + -0.06   4 
Sibling DRD4 #6-10R alleles 0.04  -0.16 +  
#6-10R * Sibling #6-10R 0.02  0.19 * N = 246 
Sibling Phenotype 0.00  0.01    
DAT1 10R/10R -0.24 * -0.06   5 
Sibling DAT1 10R/10R -0.01  -0.14   
10R/10R * Sibling 10R/10R 0.22 + 0.10   N = 246 
Sibling Phenotype 0.01  0.01    
DAT1 #10R alleles -0.23 * 0.00   6 
Sibling DAT1 #10R alleles -0.02  -0.11    
#10R * Sibling #10R 0.08  0.01   N = 246 

* p <0.05; + p<0.10    All models control for sex (male) and standard errors are adjusted for family clustering.  
Note: Sibling Phenotype indicates Health-Related Absences or Self-Rated Very Good Health according to the 
column.  Individual phenotype depends on own genotype, twin phenotype, and twin genotype, providing tentative 
evidence for the possibility of frequency dependent selection. 
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Table 5: Coefficients from Models Investigating Individual-Sibling Genotype Interaction among 
Same Sex White Fraternal Twins  
  Health-Related 

Absences 
A 

Self-Rated 
Very Good Health 

B 

 

  
Model 

Sibling Phenotype -0.02  0.08       
DRD2 A1/A1 -0.23 * -0.75 *  1 
Sibling DRD2 A1/A1 0.26  0.33 *   
A1/A1 * Sibling A1/A1 -0.27  0.67 * N = 140 
Sibling Phenotype -0.04  0.05    
DRD2 #A1 alleles -0.12  -0.06   2 
Sibling DRD2 #A1 alleles -0.07  0.00    
#A1 * Sibling #A1 0.09  0.00   N = 140 
Sibling Phenotype -0.04  0.04    
DRD4 6-10R/6-10R -0.18 * 0.22 * 3 
Sibling DRD4 6-10R/6-10R -0.18 * 0.22 *  
6-10R/6-10R * Sibling 6-10R/6-10R 0.65 * -0.16  N = 142 
Sibling Phenotype -0.03  0.04    
DRD4 #6-10R alleles -0.07  0.01   4 
Sibling DRD4 #6-10R alleles -0.01  -0.12   
#6-10R * Sibling #6-10R 0.02  0.14  N = 142 
Sibling Phenotype -0.02  0.05    
DAT1 10R/10R -0.22 * -0.02   5 
Sibling DAT1 10R/10R 0.00  -0.10   
10R/10R * Sibling 10R/10R 0.15  0.13   N = 142 
Sibling Phenotype -0.02  0.05    
DAT1 #10R alleles -0.21 * -0.02   6 
Sibling DAT1 #10R alleles -0.04  -0.14    
#10R * Sibling #10R 0.08  0.06   N = 142 

* p <0.05; + p<0.10    All models control for sex (male) and standard errors are adjusted for clustering.  
Note: Sibling Phenotype indicates Health-Related Absences or Self-Rated Very Good Health according to the 
column.  Individual phenotype depends on own genotype, twin phenotype, and twin genotype, providing tentative 
evidence for the possibility of frequency dependent selection. 
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FIGURES 

Figure 1: Predicted Health-Related Absences by Individual and Sibling DAT1 Genotype 

 
p<0.1 
Based on Model 5A in Table 4.  Individual phenotype – in this case health-related absences – depends on individual 
and sibling DAT genotype. 
 

 

Figure 2: Predicted Self-Rated Very Good Health by Individual and Sibling DRD4 Genotype 

 
p<.05 
Based on Model 3B in Table 4.  Individual phenotype – in this case the likelihood of an individual self-reporting 
very good health – depends on individual and sibling DRD4 genotype. 
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Figure 3: Predicted Likelihood of Self-Rated Very Good Health by Number of Individual and 
Sibling Long DRD4 Alleles  

 
p<.05 
Based on Model 4B in Table 4.  Individual phenotype – in this case the likelihood of an individual self-reporting 
very good health – depends on individual and sibling DRD4 genotype. 
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APPENDIX 
 
Table S1: Coefficients from Models Investigating Individual-Sibling Genotype Interaction 
among White Full Siblings 
  Health-Related 

Absences 
A 

Self-Rated 
Very Good Health 

B 

 

  
Model 

Sibling Phenotype 0.12 * 0.10 *   
DRD2 A1/A1 -0.09 + -0.09   1 
Sibling DRD2 A1/A1 -0.09 + 0.15 *   
A1/A1 * Sibling A1/A1 0.22 * 0.01  N = 1396 
Sibling Phenotype 0.12 * 0.10 *   
DRD2 #A1 alleles -0.02  0.01   2 
Sibling DRD2 #A1 alleles -0.03  0.01    
#A1 * Sibling #A1 0.03  0.00   N = 1396 
Sibling Phenotype 0.12 * 0.10 *   
DRD4 6-10R/6-10R -0.03  -0.11  3 
Sibling DRD4 6-10R/6-10R 0.00  0.03   
6-10R/6-10R * Sibling 6-10R/6-10R -0.01  0.10  N = 1404 
Sibling Phenotype 0.12 * 0.10 *   
DRD4 #6-10R alleles 0.04  0.02   4 
Sibling DRD4 #6-10R alleles -0.01  -0.03   
#6-10R * Sibling #6-10R -0.02  0.01  N = 1404 
Sibling Phenotype 0.12 * 0.09  *  
DAT1 10R/10R -0.12 * 0.04   5 
Sibling DAT1 10R/10R -0.02  0.03   
10R/10R * Sibling 10R/10R 0.13 * -0.05   N = 1406 
Sibling Phenotype 0.12 * 0.09 *   
DAT1 #10R alleles -0.13 * 0.03   6 
Sibling DAT1 #10R alleles -0.05  0.01    
#10R * Sibling #10R 0.07 * -0.01   N = 1406 

* p <0.05; + p<0.10    All models control for sex (male) and age; standard errors are adjusted for family clustering.  
Note: Sibling Phenotype indicates Health-Related Absences or Self-Rated Very Good Health according to the 
column.  Individual phenotype depends on own genotype, sibling phenotype, and sibling genotype, providing 
tentative evidence for the possibility of frequency dependent selection. 
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Figure S1: Path Diagram of Model Predicting Very Good Health  

 
Path analysis of regression model 4B in Table 4.  Straight lines represent standardized path coefficients. Curved 

lines represent correlations. 


