2,060 research outputs found

    Calculation of AGARD Wing 445.6 Flutter Using Navier-Stokes Aerodynamics

    Get PDF
    An unsteady, 3D, implicit upwind Euler/Navier-Stokes algorithm is here used to compute the flutter characteristics of Wing 445.6, the AGARD standard aeroelastic configuration for dynamic response, with a view to the discrepancy between Euler characteristics and experimental data. Attention is given to effects of fluid viscosity, structural damping, and number of structural model nodes. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. The V-g analysis indicates that fluid viscosity has a significant effect on the supersonic flutter boundary for this wing

    Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase

    Get PDF
    The nucleotide sequence of the 1.85-kilobase EcoRI fragment from Vibrio harveyi that was cloned using a mixed-sequence synthetic oligonucleotide probe (Cohn, D. H., Ogden, R. C., Abelson, J. N., Baldwin, T. O., Nealson, K. H., Simon, M. I., and Mileham, A. J. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 120-123) has been determined. The alpha subunit-coding region (luxA) was found to begin at base number 707 and end at base number 1771. The alpha subunit has a calculated molecular weight of 40,108 and comprises a total of 355 amino acid residues. There are 34 base pairs separating the start of the alpha subunit structural gene and a 669-base open reading frame extending from the proximal EcoRI site. At the 3' end of the luxA coding region there are 26 bases between the end of the structural gene and the start of the luxB structural gene. Approximately two-thirds of the alpha subunit was sequenced by protein chemical techniques. The amino acid sequence implied by the DNA sequence, with few exceptions, confirmed the chemically determined sequence. Regions of the alpha subunit thought to comprise the active center were found to reside in two discrete and relatively basic regions, one from around residues 100-115 and the second from around residues 280-295

    IRMA via SDN: Intrusion Response and Monitoring Appliance via Software-Defined Networking

    Get PDF
    Recent approaches to network intrusion prevention systems (NIPSs) use software-defined networking (SDN) to take advantage of dynamic network reconfigurability and programmability, but issues remain with system component modularity, network size scalability, and response latency. We present IRMA, a novel SDN-based NIPS for enterprise networks, as a network appliance that captures data traffic, checks for intrusions, issues alerts, and responds to alerts by automatically reconfiguring network flows via the SDN control plane. With a composable, modular, and parallelizable service design, we show improved throughput and less than 100 ms average latency between alert detection and response.Roy J. Carver FellowshipOpe

    Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields

    Full text link
    Quasicrystals provide a fascinating class of materials with intriguing properties. Despite a strong potential for numerous technical applications, the conditions under which quasicrystals form are still poorly understood. Currently, it is not clear why most quasicrystals hold 5- or 10-fold symmetry but no single example with 7 or 9-fold symmetry has ever been observed. Here we report on geometrical constraints which impede the formation of quasicrystals with certain symmetries in a colloidal model system. Experimentally, colloidal quasicrystals are created by subjecting micron-sized particles to two-dimensional quasiperiodic potential landscapes created by n=5 or seven laser beams. Our results clearly demonstrate that quasicrystalline order is much easier established for n = 5 compared to n = 7. With increasing laser intensity we observe that the colloids first adopt quasiperiodic order at local areas which then laterally grow until an extended quasicrystalline layer forms. As nucleation sites where quasiperiodicity originates, we identify highly symmetric motifs in the laser pattern. We find that their density strongly varies with n and surprisingly is smallest exactly for those quasicrystalline symmetries which have never been observed in atomic systems. Since such high symmetry motifs also exist in atomic quasicrystals where they act as preferential adsorption sites, this suggests that it is indeed the deficiency of such motifs which accounts for the absence of materials with e.g. 7-fold symmetry

    Study of Interplanetary Magnetic Field with Ground State Alignment

    Full text link
    We demonstrate a new way of studying interplanetary magnetic field -- Ground State Alignment (GSA). Instead of sending thousands of space probes, GSA allows magnetic mapping with any ground telescope facilities equipped with spectropolarimeter. The polarization of spectral lines that are pumped by the anisotropic radiation from the Sun is influenced by the magnetic realignment, which happens for magnetic field (<1G). As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic observations of the Jupiter's Io and comet Halley. Polarization at each point was constructed according to the local magnetic field detected by spacecrafts. Both spatial and temporal variations of turbulent magnetic field can be traced with this technique as well. The influence of magnetic field on the polarization of scattered light is discussed in detail. For remote regions like the IBEX ribbons discovered at the boundary of interstellar medium, GSA provides a unique diagnostics of magnetic field.Comment: 11 pages, 19 figures, published in Astrophysics and Space Scienc

    Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species

    Get PDF
    Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections

    Mechanism of virus attenuation by codon pair deoptimization

    Get PDF
    Codon pair deoptimization is an efficient virus attenuation strategy, but the mechanism that leads to attenuation is unknown. The strategy involves synthetic recoding of viral genomes that alters the positions of synonymous codons, thereby increasing the number of suboptimal codon pairs and CpG dinucleotides in recoded genomes. Here we identify the molecular mechanism of codon pair deoptimization-based attenuation by studying recoded influenza A viruses. We show that suboptimal codon pairs cause attenuation, whereas the increase of CpG dinucleotides has no effect. Furthermore, we show that suboptimal codon pairs reduce both mRNA stability and translation efficiency of codon pair-deoptimized genes. Consequently, reduced protein production directly causes virus attenuation. Our study provides evidence that suboptimal codon pairs are major determinants of mRNA stability. Additionally, it demonstrates that codon pair bias can be used to increase mRNA stability and protein production of synthetic genes in many areas of biotechnology

    The Optical Design and Characterization of the Microwave Anisotropy Probe

    Full text link
    The primary goal of the MAP satellite, now in orbit, is to make high fidelity polarization sensitive maps of the full sky in five frequency bands between 20 and 100 GHz. From these maps we will characterize the properties of the cosmic microwave background (CMB) anisotropy and Galactic and extragalactic emission on angular scales ranging from the effective beam size, <0.23 degree, to the full sky. MAP is a differential microwave radiometer. Two back-to-back shaped offset Gregorian telescopes feed two mirror symmetric arrays of ten corrugated feeds. We describe the prelaunch design and characterization of the optical system, compare the optical models to the measurements, and consider multiple possible sources of systematic error.Comment: ApJ in press; 22 pages with 11 low resolution figures; paper is available with higher quality figures at http://map.gsfc.nasa.gov/m_mm/tp_links.htm
    • …
    corecore