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ABSTRACT
Recent approaches to network intrusion prevention systems
(NIPSs) use software-defined networking (SDN) to take ad-
vantage of dynamic network reconfigurability and programma-
bility, but issues remain with system component modularity,
network size scalability, and response latency. We present
IRMA, a novel SDN-based NIPS for enterprise networks,
as a network appliance that captures data traffic, checks for
intrusions, issues alerts, and responds to alerts by automati-
cally reconfiguring network flows via the SDN control plane.
With a composable, modular, and parallelizable service de-
sign, we show improved throughput and less than 100 ms
average latency between alert detection and response.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Op-
erations—Network management, Network monitoring

Keywords
Software-defined networking, enterprise network, network
intrusion prevention system, NIDS, NIPS, OpenFlow

1. INTRODUCTION
Network intrusion detection systems (NIDSs) and preven-

tion systems (NIPSs) monitor and detect potentially mali-
cious or undesirable network traffic, but implementation of
such systems within an enterprise network is often a com-
plex matter [5]. The static nature of these systems often
requires human intervention to implement responses, and
actionable events may not necessarily be executed quickly
enough to mitigate real-time threats [4].

A software-defined networking (SDN) approach provides
more flexibility by allowing for scalable monitoring and for
dynamic reconfiguration of the network as a response mech-
anism [3]. However, if we just take a simple extension of ex-
isting NIPS by using SDN networks for the underlying data
traffic without any close coordination between the NIPS and
SDN network, this will be insufficient for solving problems
such as NIPS modularity, scalability, latency, and respon-
siveness.

We propose the Intrusion Response and Monitoring Ap-
pliance (IRMA) with its related system architecture for mon-

itoring and response. IRMA represents a novel and flexi-
ble NIPS appliance designed in coordination with the SDN-
based network architecture, whose design is:

• modular, in terms of individual system components
to enable reusability and component evolution without
requiring redesign of the underlying architecture;
• scalable, in terms of the number of monitors and switches

beyond a trivial network size; and
• latency-aware, to be able to respond quickly to threats.

Our contribution includes the IRMA design, which in-
corporates 1) a “divide and conquer” hierarchical alert ap-
proach that first collects raw alerts from individual zones of
a partitioned enterprise network and then analyzes and ag-
gregates them into higher-level alert data collection for scal-
ability reasons; 2) asynchronous communications, parallel
processing, and pipelining of modular service components
to achieve reduced latency and higher throughput; and 3)
service component design to achieve software implementa-
tion scalability and modularity.

We validated IRMA both through simulation and through
experimentation on the GENI networking testbed [2]. We
simulated incoming alert data on the scale of a campus en-
terprise network to show how the design scales through zon-
ing and parallelization. We created a small SDN topology
on GENI to show component modularity and demonstrated
that the average latency between detection of new alerts and
response through SDN mechanisms is less than 100 ms.

2. ASSUMPTIONS & RELATED WORK
Our network model assumes a medium- to large-scale cam-

pus enterprise network, such as one found in a university or
corporation. End hosts connect at the edge layer of switches,
with the edge layer connected by a core layer whose pri-
mary role is to forward traffic. Our threat model assumes that
some subset of traffic is malicious (intrusive) or undesired.1

Malicious end hosts may seek to attack other hosts within
the network (e.g., for intelligence gathering or as staging for
larger future attacks) or outside of the network (e.g., bot-
nets). To mitigate the ability to evade detection, strategically
1Undesired traffic, such as BitTorrent traffic, may not be a security
threat but could still negatively disrupt network performance.
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placed monitors (e.g., Snort) perform three functions: they
receive copies of traffic entering edge layer switches, detect
potential intrusions, and generate alerts on suspicious traffic.
Challenges lie in collecting these alerts in a scalable way and
implementing network responses dynamically and quickly.2

SDN provides new opportunities for monitoring and re-
sponse through its global view of and control over the net-
work and its programmability. Combining existing NIDS
solutions with the responsive actions of SDN in a novel way
allows for a new type of intrusion prevention system that is
automatic, dynamic, programmable, and agile.

The authors of [3] propose an “active security” method-
ology for programmatic control over a network through pro-
tection of infrastructure, sensing of alerts from multiple mon-
itors, adjustment of the network to respond accordingly, col-
lection of data for further forensic analysis, and coordination
of counterattacks.

SnortFlow [6] and SDNIPS [7] propose SDN-based re-
sponse mechanisms for cloud computing networks, but both
designs focus on processing performance rather than system
scalability or latency. MalwareMonitor [1] proposes an SDN
framework for detecting malware at the border gateway of a
campus network by slicing subsets of traffic and dynamically
provisioning monitors, though placement of monitoring and
response at the gateway limits the ability to provide moni-
toring and response on intranet traffic and may cause a bot-
tleneck if inspection of traffic is required before it enters or
leaves the network’s connection to the Internet.

3. IRMA DESIGN
To the best of our knowledge, IRMA is the first network

appliance in an SDN enterprise-scale network context to co-
ordinate the monitoring, intrusion detection, and analysis of
data traffic with responses assisted by the SDN control plane.

3.1 Design goals and choices
Our primary design goals for IRMA are to consider modu-

larity in system components to promote reusability and inde-
pendent component evolution, scalability of the size of the
network in terms of switches and monitors, and minimiza-
tion of latency (when possible) between detection of mali-
cious traffic and prevention through responsive actions.

Modularity: We incorporate modularity to logically sep-
arate functionality, to further extend the system’s capabilities
in incremental and evolutional changes, to decouple bind-
ings between key system components, and to pass informa-
tion through standardized interfaces decoupled from the un-
derlying component’s functionality.

Latency: To minimize latency, we made the design choice
to let monitoring be of a higher priority than response. IRMA
passively monitors mirrored data plane traffic and performs
analysis and responses in the background of otherwise nor-
2A third challenge lies in false positive alerts that inadvertently trig-
ger network responses. We do not address this issue in this paper
but note its importance in a production system setting.
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Figure 1: Network architecture for IRMA (numbered
items described in Section 3.2).

mal control plane operations.
Modularity, scalability, and latency cannot all be achieved

equally, however. We prioritize modularity and scalability,
noting that doing so may conflict with minimization of la-
tency in certain instances. For that reason, we attempt to
minimize latency when it can reasonably be minimized.

End hosts: Importantly, we note that our design does not
require end hosts to be modified for monitoring purposes, as
is required in [3, 6, 7]. Monitoring occurs transparently from
the perspective of end hosts,3 and such design allows for use
in “open” enterprise networks such as those of universities.

Zoning: We partition the network into locally manage-
able zones to improve monitor alert collection scalability and
to “divide and conquer” the alert retrieval and analysis.

3.2 Information flow & functional service com-
ponents

In the SDN control plane, we define a flow entry as a com-
bination of flow match attributes (e.g., source and destina-
tion IP address, source and destination port4), an associated
flow entry action (e.g., “forward”, “block”, “redirect”), and
other metadata (e.g., incoming port). A switch contains flow
tables, each comprising multiple flow entries.

Figure 1 shows the high-level information flow among
the IRMA appliance, the SDN controller, and the SDN en-
terprise network. Figure 2 shows the detailed information
flow within the IRMA appliance through its components,
processes, and data stores. IRMA, as shown in Figure 2,
is partitioned into composable service components that re-

3Though we do not attempt in this paper to prove the integrity of
the alert data received in the IRMA architecture, we note that re-
moval of monitors from the end hosts favors a more secure system
design by limiting the potential attack surface and restricting what
monitoring components end hosts (users) can access or modify.
4At that granularity, flow entries can define end-to-end services.
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Figure 2: Components, processes, and data stores in the IRMA appliance (numbered items described in Section 3.2).

flect a highly modular design. The modularity means that
each functional service entity can be replaced with another
implementation of the same functionality.

We outline that information flow, with emphasis on IRMA
and its functional service components. The numbered items
below correspond to numbered elements in Figures 1 and 2.

1. Incoming network traffic packets in the data plane are
matched against switches’ flow tables based on the flow
entries’ flow match attributes, and a corresponding flow
entry action is performed (e.g., “forward”).

2. Mirrored copies of the packets are passively sent to a
monitor (e.g., Snort) that detects intrusions and gener-
ates raw alerts. Raw alerts include packet headers and
payload, and they correlate with packets from a spe-
cific flow entry defined by the flow match attributes.
(Packets that do not generate alerts are discarded.)

3. An alert listener asynchronously retrieves (and later
removes) raw alerts from the local staging database
(see Section 3.3) in the network’s respective zone. An
audit recorder records the alerts to a local audit database.

4. An alert distiller filters the raw alert and removes un-
necessary details, leaving the flow match attributes.

5. A priority decider determines the severity of the threat
and sets a response action (e.g., “block”, “redirect”,
“isolate”) to be sent along with the flow match attributes.

6. A response engine references the global system state
(see Section 4.1). It 1) inserts or updates global sys-
tem state entries based on the incoming flow match at-
tributes and response action, and 2) determines if the
response action should be sent to the SDN controller
(i.e., if the response action should be “enabled” via the
SDN action modifier).

7. A response action recaller also references the global
system state (see Section 4.1). If it determines that
response actions need to be recalled, it tells the SDN
action modifier to recall them.

8. An SDN action modifier interfaces directly with the
SDN controller via the northbound API of the SDN
architecture (see Section 3.4).
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Figure 3: IRMA hierarchical alert data model.

9. From the northbound API, the SDN controller receives
the flow match attributes and response action.

10. The SDN controller pushes changes to the switches via
the southbound API using the OpenFlow protocol.

11. In the switches, flow entries matching the flow match
attributes have their flow entry action either set to the
response action (when pushing a response action) or
set to the previous flow entry action (when recalling a
response action).

Administrators can set policies both through 1) rule match-
ing in monitors and 2) severity and response action decisions
in priority deciders.

3.3 Hierarchical alert data model
A trade-off occurs between the extent of alert data collec-

tion and the definition of when and how that alert data should
be used. We separate storage into local and global databases
in a hierarchical alert data model as shown in Figure 3.

Processing, storage, and auditing of large numbers of raw
alerts is a per-zone, parallelizable process that can be im-
plemented in many local databases and processes at a low
level of the hierarchy. Only the significant attributes need
to be filtered and sent to a higher level in the hierarchy.
Local staging databases include detailed information about
raw alerts generated from monitors. The databases serve as
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Figure 4: IRMA control protocol diagram.

local buffers from which alert processing can occur on a per-
zone level. Local audit databases maintain a copy of the
alert data to allow for later retrieval of pertinent events at a
detailed level, including full headers, full packet captures,
timestamps, location of monitor, and which signature match
(monitor rule) instantiated the alert.

System-wide decision making and responses at the higher
level of the alert data hierarchy only require summarized
alert information. We use a global system state database to
maintain the current state of the IRMA network appliance,
including a statistical summary of all alerts seen across the
network and those whose response actions have or have not
been sent to the SDN controller. Figure 5 shows an illustra-
tion of summarized alert data stored in this database.

Intermediate message passing among components occurs
through first-come, first-served queues with multiple servers
(processes), as shown in Figure 2.

3.4 Control protocol
Figure 4 shows the protocols between the IRMA network

appliance, the SDN controller, and the SDN switches. These
components communicate with each other during 3 impor-
tant phases: the initial setup between the switches and the
SDN controller when the switches come online, the setup
between IRMA and the SDN controller to query the con-
troller for a list of switches, and IRMA’s SDN action modi-
fier communication with the SDN controller when response
actions are either pushed or recalled. The IRMA network

Algorithm 1 Basic response engine algorithm.
1: procedure ResponseEngine(Fi, Ai, S )
2: Ti ← current time
3: if Fi ∈ F then . Flow known to system
4: Ci ← Ci + 1 . Increment si’s counter
5: else . Flow unknown to system
6: Ci ← 1 . Initiate counter
7: Ei ← false . Do not enable action yet
8: si ← (Fi, Ai,Ci,Ti, Ei) . Create entry
9: S ← S ∪ {si} . Add entry to state

10: if Ci ≥ CThr and Ei = false then
11: SDNActionModifier(Fi, Ai, push)
12: Ei ← true . Enable response action

Algorithm 2 Basic response action recaller algorithm.
1: procedure ResponseActionRecaller(S )
2: for each si in S E do
3: if current time − Ti ≥ TThr then
4: SDNActionModifier(Fi, Ai, recall)
5: S ← S \ {si} . Remove entry from state

Table 1: Notation for global system state
Term Definition / Values

S global system state S = {s1, s2, . . . , sn}

si global system state entry si = (Fi, Ai,Ci,Ti, Ei)
Fi flow match attributes Fi = (IPi

src, IPi
dst ,TCPi

src,TCPi
dst)

Ai response action Ai ∈ {block, redirect, isolate, . . . }
Ci count Ci ∈ {1, 2, 3, . . . }
Ti last seen time Ti ∈ {valid date and time}
Ei response action sent to SDN

controller (“enabled”)
Ei ∈ {true, false}

S E entries whose response ac-
tion has been enabled

S E = {si ∈ S | Ei = true}

S NE entries whose response ac-
tion has not been enabled

S NE = {si ∈ S | Ei = false}

CThr count threshold CThr ∈ {1, 2, 3, . . . }
TThr time threshold TThr ∈ [0,∞)

appliance uses its knowledge of switches in order to push or
recall appropriate response actions out to every switch.

4. IRMA RESPONSE ALGORITHMS
Algorithms 1 and 2 show the algorithms implemented5 for

the response engine and response action recaller functions,
respectively. Table 1 defines the notation used throughout
the algorithms and this section.

4.1 Procedures
In Algorithm 1, the response engine uses flow match at-

tributes Fi and a response action Ai to update the global sys-
tem state S and push response action(s) as necessary. If
5The algorithms are just two of many potential methods that can
determine when to add and remove responses. We implement basic
thresholding algorithms here and note that functional modularity
allows for the algorithms to be replaced without requiring modifi-
cation of any other component of the IRMA architecture.
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Figure 5: Examples of entries in the global system state database. (See Table 1 for notation definitions.)

the flow match attributes happen to be already defined in
the ith entry si in the system state (line 3), then the corre-
sponding entry’s count Ci is incremented. Otherwise, a new
entry is formed (lines 6–8) and added into the system state
(line 9). If the entry has a count that equals or exceeds the
count threshold CThr and the corresponding response action
has not yet been sent to the SDN controller (line 10), then
the flow match attributes and response action are sent to the
SDN action modifier. That action is signified through setting
the entry’s response-action-enabled flag Ei to true.

In Algorithm 2, the response action recaller uses the global
system state S to periodically recall response actions as nec-
essary. If the time since the entry was last updated Ti is
greater than the timing threshold TThr, the response action is
recalled, and the entry in the global system state is removed.
Algorithm 2 has two benefits: 1) hosts or host processes that
have not recently caused malicious activity will eventually
have their flows’ corresponding response actions recalled,
and 2) ongoing attacks will continue to reset Ti, ensuring
that the response action remains enabled.

4.2 Time and space complexity
Time and space complexity of both algorithms interfac-

ing with the global system state database depends on imple-
mentation. A PostgreSQL implementation uses b-trees by
default for indexing, yielding O(log n) worst-case time com-
plexity for searches, inserts, and deletes, and O(n) amount
of storage for n number of entries in state S .

5. IRMA VALIDATION

5.1 Implementation
We implemented the IRMA appliance using Python and

PostgreSQL. Python allows for creation of multiple processes
that communicate through queues. PostgreSQL provides ACID
compliance, asynchronous communication, and event-driven
triggers. We use the Snort and Suricata IDSs to demonstrate
heterogeneous and multiple monitors. Snort and Suricata
both write to a common Unified2 logging format, so we used
the Barnyard2 interpreter to convert alerts in the Unified2
format to entries in a PostgreSQL database. To implement

the SDN network, we used the Floodlight OpenFlow con-
troller and the Open vSwitch (OVS) software switch.

5.2 Experimental setup
Simulation of enterprise scalability: We simulated the

zoning scale of an enterprise network to test the hypothesis
that partitioning of the network will improve data collection,
processing scalability, and throughput. Using a simulator,
we set up and varied the number of local staging databases
to simulate the zone-partitioning scheme. We generated and
queued a fixed number of 25,000 raw alerts systemwide and
then released them instantaneously to be processed in order
to derive a steady-state throughput. We ran IRMA on a sin-
gle, multi-core machine while varying the number of zones,
alert distillers (AD), priority deciders (PD), and response en-
gines (RE). For metrics, we collected the systemwide steady-
state throughput (alerts processed per second).

Experimentation with SDN network: On a smaller scale,
we ran IRMA within an SDN network on GENI [2] to test
for modularity of system components and to validate the
monitoring and response mechanisms in an SDN context.
We used 2 OVS switches, 2 types of monitors (Snort and
Suricata) connected to the switches’ mirrored ports, 1 con-
troller, and 2 end hosts. We set a rule that generates alerts
in the monitors upon ICMP ping requests, and we config-
ured IRMA to block the host’s traffic in the switch data plane
upon receiving these ping alerts. We used 2 zones (2 alert lis-
teners) and one of each component (1 AD, 1 PD, and 1 RE).
For metrics, we collected the latency of AL, AD, PD, and RE
components as well as the total latency of all 4 components.

5.3 Results and discussion
Figure 6 shows the simulation results of the steady-state

throughput when we attempted to process the queued 25,000
alerts. The number of zones6 varied from 1 (no partitioning)
to 32 (high partitioning), and the number of concurrent pro-
6For a realistic scale in determining the number of zones, we used
the enterprise network of the University of Illinois’ College of En-
gineering as a model, whose IT service manages 100 switches, 17
departments, 20 buildings, and 7,000 networked systems for ap-
proximately 13,000 faculty, staff, and students.
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cesses per component varied from 1 (no parallelization) to 4
(high parallelization).

We note a significant performance improvement when the
network was partitioned from a single zone to 4 zones: the
throughput with 4 partitions is approximately quadruple com-
pared to the throughput with no partitioning. However, we
note that the throughput decreases beyond 4 zones. We hy-
pothesize that this is a limitation of implementing the simu-
lation within a single multi-core machine with only 4 cores,
not a limitation in the architecture design itself, because in-
creasing the number of concurrent processes still increases
the throughput regardless of the number of zones.

Figure 7 shows the experimental results of the small-scale
SDN network on GENI. We repeated the ICMP ping detec-
tion experiment 100 times and used 93 of the experiments
in our analysis after removing incomplete data and outliers.
The mean latency from when new alerts were found to when
they were instantiated as SDN responses was 78.206 ms.

Both the alert listener and the response engine showed
higher latencies than the alert distiller and priority decider,
likely because the alert listener and response engine use slower
data stores (i.e., database storage on disk) and more sophis-
ticated logic. The alert listener includes at least 1 round-trip

time between the local staging database and the IRMA ap-
pliance in its latency, since it receives the raw alert data sepa-
rately from and after the alert’s corresponding asynchronous
notification.

6. CONCLUSION
We presented IRMA, a network appliance for SDN-based

enterprise networks that provides for dynamic, flexible, and
automatic reconfigurability and response mechanisms as a
result of monitor-based alerts. Our results from simulation
and experimentation demonstrate the efficacy of the appli-
ance, and we hope for its eventual adoption in real enterprise
networks.
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