101 research outputs found

    Modelling the Galactic bar using OGLE-II Red Clump Giant Stars

    Get PDF
    Red clump giant stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration database to constrain analytic tri-axial models for the Galactic bar. We find the bar major axis is oriented at an angle of 24 - 27 degrees to the Sun-Galactic centre line-of-sight. The ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane x_0, y_0, and vertical bar scale length z_0, is x_0 : y_0 : z_0 = 10 : 3.5 : 2.6, suggesting a slightly more prolate bar structure than the working model of Gerhard (2002) which gives the scale length ratios as x_0 : y_0 : z_0 = 10 : 4 : 3 .Comment: 15 pages, 10 figures, accepted for publication in MNRAS. Supplementary material available online: 10 pages, 10 figure

    Predictions for the Detection and Characterization of a Population ofFree-floating Planets with K2 Campaign 9

    Get PDF
    K2 Campaign 9 (K2C9) offers the first chance to measure parallaxes and masses of members of the large population of free-floating planets (FFPs) that has previously been inferred from measurements of the rate of short-timescale microlensing events. Using detailed simulations of the nominal campaign (ignoring the loss of events due to Kepler\u27s emergency mode) and ground-based microlensing surveys, we predict the number of events that can be detected if there is a population of 1 MjupiterFFPs matching current observational constraints. Using a Fisher matrix analysis, we also estimate the number of detections for which it will be possible to measure the microlensing parallax, angular Einstein radius, and FFP mass. We predict that between 1.4 and 7.9 events will be detected in the K2 data, depending on the noise floor that can be reached, but with the optimistic scenario being more likely. For nearly all of these, it will be possible to either measure the parallax or constrain it to be probabilistically consistent with only planetary-mass lenses. We expect that for between 0.42 and 0.98 events it will be possible to gain a complete solution and measure the FFP mass. For the emergency-mode truncated campaign, these numbers are reduced by 20 percent. We argue that when combined with prompt high-resolution imaging of a larger sample of short-timescale events, K2C9 will conclusively determine if the putative FFP population is indeed both planetary and free-floating

    Microlensing of close binary stars

    Full text link
    The gravity due to a multiple-mass system has a remarkable gravitational effect: the extreme magnification of background light sources along extended so-called caustic lines. This property has been the channel for some remarkable astrophysical discoveries over the past decade, including the detection and characterisation of extra-solar planets, the routine analysis of limb-darkening, and, in one case, limits set on the apparent shape of a star several kiloparsec distant. In this paper we investigate the properties of the microlensing of close binary star systems. We show that in some cases it is possible to detect flux from the Roche lobes of close binary stars. Such observations could constrain models of close binary stellar systems.Comment: 10 pages, accepted to MNRA

    Prediction of Planet Yields by the PRime-focus Infrared Microlensing Experiment Microlensing Survey

    Full text link
    The PRime-focus Infrared Microlensing Experiment (PRIME) will be the first to conduct a dedicated near infrared (NIR) microlensing survey by using a 1.8m telescope with a wide field of view of 1.45 deg2{\rm deg^{2}} at the South African Astronomical Observatory (SAAO). The major goals of the PRIME microlensing survey are to measure the microlensing event rate in the inner Galactic bulge to help design the observing strategy for the exoplanet microlensing survey by the {\it Nancy Grace Roman Space Telescope} and to make a first statistical measurement of exoplanet demographics in the central bulge fields where optical observations are very difficult owing to the high extinction in these fields. Here we conduct a simulation of the PRIME microlensing survey to estimate its planet yields and determine the optimal survey strategy, using a Galactic model optimized for the inner Galactic bulge. In order to maximize the number of planet detections and the range of planet mass, we compare the planet yields among four observation strategies. Assuming {the \citet{2012Natur.481..167C} mass function as modified by \citet{2019ApJS..241....3P}}, we predict that PRIME will detect planetary signals for 42−5242-52 planets (1−21-2 planets with Mp≀1M⊕M_p \leq 1 M_\oplus, 22−2522-25 planets with mass 1M⊕<Mp≀100M⊕1 M_\oplus < M_p \leq 100 M_\oplus, 19−2519-25 planets 100M⊕<Mp≀10000M⊕100 M_\oplus < M_p \leq 10000 M_\oplus), per year depending on the chosen observation strategy.Comment: 25 pages, 17 figures, and 3 tables. Accept for publication in The Astronomical Journa

    Proper Motion Dispersions of Red Clump Giants in the Galactic Bulge: Observations and Model Comparisons

    Get PDF
    Red clump giants in the Galactic bulge are approximate standard candles and hence they can be used as distance indicators. We compute the proper motion dispersions of RCG stars in the Galactic bulge using the proper motion catalogue from the second phase of the Optical Gravitational Microlensing Experiment (OGLE-II, Sumi et al. 2004) for 45 fields. The proper motion dispersions are measured to a few per cent accuracy due to the large number of stars in the fields. The observational sample is comprised of 577736 stars. These observed data are compared to a state-of-the-art particle simulation of the Galactic bulge region. The predictions are in rough agreement with observations, but appear to be too anisotropic in the velocity ellipsoid. We note that there is significant field-to-field variation in the observed proper motion dispersions. This could either be a real feature, or due to some unknown systematic effect.Comment: 12 pages, 13 figures, accepted for publication in MNRA

    Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants

    Full text link
    We compare the planet-to-star mass-ratio distribution measured by gravitational microlensing to core accretion theory predictions from population synthesis models. The core accretion theory's runaway gas accretion process predicts a dearth of intermediate-mass giant planets that is not seen in the microlensing results. In particular, the models predict ∌10 ×\sim10\,\times fewer planets at mass ratios of 10−4≀q≀4×10−410^{-4} \leq q \leq 4 \times 10^{-4} than inferred from microlensing observations. This tension implies that gas giant formation may involve processes that have hitherto been overlooked by existing core accretion models or that the planet-forming environment varies considerably as a function of host-star mass. Variation from the usual assumptions for the protoplanetary disk viscosity and thickness could reduce this discrepancy, but such changes might conflict with microlensing results at larger or smaller mass ratios, or with other observations. The resolution of this discrepancy may have important implications for planetary habitability because it has been suggested that the runaway gas accretion process may have triggered the delivery of water to our inner solar system. So, an understanding of giant planet formation may help us to determine the occurrence rate of habitable planets.Comment: 12 pages, 2 figures, 1 table, accepted for publication in ApJ

    OGLE-II High Proper Motion Stars towards the Galactic centre

    Full text link
    The photometry data base of the second phase of the OGLE microlensing experiment, OGLE-II, is a rich source of information about the kinematics and structure of the Galaxy. In this work we use the OGLE-II proper motion catalogue to identify candidate stars which have high proper motions. 521 stars with proper motion mu > 50 mas/yr in the OGLE-II proper motion catalogue (Sumi 2004) were cross-identified with stars in the MACHO high proper motion catalogue, and the DENIS and 2MASS infra-red photometry catalogues. Photometric distances were computed for stars with colours consistent with G/K and M type stars. 6 stars were newly identified as possible nearby (< 50 pc) M dwarfs.Comment: 7 figures and 4 tables, MNRAS, accepte

    A Planetary Microlensing Event with an Unusually Red Source Star: MOA-2011-BLG-291

    Full text link
    We present the analysis of planetary microlensing event MOA-2011-BLG-291, which has a mass ratio of q=(3.8±0.7)×10−4q=(3.8\pm0.7)\times10^{-4} and a source star that is redder (or brighter) than the bulge main sequence. This event is located at a low Galactic latitude in the survey area that is currently planned for NASA's WFIRST exoplanet microlensing survey. This unusual color for a microlensed source star implies that we cannot assume that the source star is in the Galactic bulge. The favored interpretation is that the source star is a lower main sequence star at a distance of DS=4.9±1.3 D_S=4.9\pm1.3\,kpc in the Galactic disk. However, the source could also be a turn-off star on the far side of the bulge or a sub-giant in the far side of the Galactic disk if it experiences significantly more reddening than the bulge red clump stars. However, these possibilities have only a small effect on our mass estimates for the host star and planet. We find host star and planet masses of Mhost=0.15−0.10+0.27M⊙M_{\rm host} =0.15^{+0.27}_{-0.10}M_\odot and mp=18−12+34M⊕m_p=18^{+34}_{-12}M_\oplus from a Bayesian analysis with a standard Galactic model under the assumption that the planet hosting probability does not depend on the host mass or distance. However, if we attempt to measure the host and planet masses with host star brightness measurements from high angular resolution follow-up imaging, the implied masses will be sensitive to the host star distance. The WFIRST exoplanet microlensing survey is expected to use this method to determine the masses for many of the planetary systems that it discovers, so this issue has important design implications for the WFIRST exoplanet microlensing survey
    • 

    corecore