29 research outputs found

    Productive and efficient computational science through domain-specific abstractions

    Get PDF
    In an ideal world, scientific applications are computationally efficient, maintainable and composable and allow scientists to work very productively. We argue that these goals are achievable for a specific application field by choosing suitable domain-specific abstractions that encapsulate domain knowledge with a high degree of expressiveness. This thesis demonstrates the design and composition of domain-specific abstractions by abstracting the stages a scientist goes through in formulating a problem of numerically solving a partial differential equation. Domain knowledge is used to transform this problem into a different, lower level representation and decompose it into parts which can be solved using existing tools. A system for the portable solution of partial differential equations using the finite element method on unstructured meshes is formulated, in which contributions from different scientific communities are composed to solve sophisticated problems. The concrete implementations of these domain-specific abstractions are Firedrake and PyOP2. Firedrake allows scientists to describe variational forms and discretisations for linear and non-linear finite element problems symbolically, in a notation very close to their mathematical models. PyOP2 abstracts the performance-portable parallel execution of local computations over the mesh on a range of hardware architectures, targeting multi-core CPUs, GPUs and accelerators. Thereby, a separation of concerns is achieved, in which Firedrake encapsulates domain knowledge about the finite element method separately from its efficient parallel execution in PyOP2, which in turn is completely agnostic to the higher abstraction layer. As a consequence of the composability of those abstractions, optimised implementations for different hardware architectures can be automatically generated without any changes to a single high-level source. Performance matches or exceeds what is realistically attainable by hand-written code. Firedrake and PyOP2 are combined to form a tool chain that is demonstrated to be competitive with or faster than available alternatives on a wide range of different finite element problems.Open Acces

    A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake

    Get PDF
    We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of three-dimensional high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured meshes. We evaluate the implementation of this algorithm in the Firedrake finite element system on a range of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after 10–20 layers as long as the underlying mesh is well ordered. We characterize the resulting spatial and temporal reuse in a representative set of both continuous-Galerkin and discontinuous-Galerkin discretizations. On meshes with realistic numbers of layers the performance achieved is between 70 and 90 % of a theoretical hardware-specific limit

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.Peer reviewe

    The by-product effect on metal markets – new insights to the price behavior of minor metals

    Get PDF
    We will examine price dependencies between primary products and co-products from metal markets. First, we develop an optimization model to determine the profit-maximizing extraction behavior of mining companies. With this model, we analyze how the companies optimally react to exogenous demand shocks on the metal markets, and how the prices of metallic primary products and their co-products are related to each other. This approach enables us to determine the basic conditions leading to price relationships. Second, we validate our theoretical findings on monthly metal prices from June 2009 to January 2013. We apply a linear regression model to analyze the price relationships of the primary products and their co-products and finally compare the results of our analysis to our model forecasts

    Technology Position Paper: Compact Thermal Energy Storage

    No full text
    This position paper provides an overview of the compact thermal energy storage technologies market, outlining its importance, potential, and development. It addresses policy, decision makers, and influencers and aims to present high-level information as a basis for uptake and further development. It concludes by highlighting actions needed to further exploit thermal energy storages with minimal space requirements and accelerate more efficient energy systems, including sector coupling, with a higher share of renewables
    corecore