8 research outputs found

    Lung function and peak oxygen uptake in chronic obstructive pulmonary disease phenotypes with and without emphysema.

    Get PDF
    Previous studies of associations of forced expiratory lung volume in one second (FEV1) with peak oxygen uptake (VO2peak) in chronic obstructive pulmonary disease (COPD) have not taken sex, age and height related variance of dynamic lung volumes into account. Nor have such demographic spread of spirometric measures been considered in studies comparing VO2peak between COPD phenotypes characterized by degree of emphysema. We aimed to assess the association of FEV1Z-score with VO2peak in COPD (n = 186) and investigate whether this association differs between emphysema (E-COPD) and non-emphysema (NE-COPD) phenotypes. Corresponding assessments using standardized percent predicted FEV1 (ppFEV1) were performed for comparison. Additionally, phenotype related differences in VO2peak were compared using FEV1Z-score and ppFEV1 as alternative expressions of FEV1. E-COPD and NE-COPD were defined by transfer factor of the lung for carbon monoxide below and above lower limits of normal (LLN), respectively. The associations were assessed in linear regression models. One unit reduction in FEV1Z-score was associated with 1.9 (95% CI 1.4, 2.5) ml/kg/min lower VO2peak. In stratified analyses, corresponding estimates were 2.2 (95% CI 1.4, 2.9) and 1.2 (95% CI 0.2, 2.2) ml/kg/min lower VO2peak in E-COPD and NE-COPD, respectively. The association did not differ statistically by COPD phenotype (p-value for interaction = 0.153). Similar estimates were obtained in analyses using standardized ppFEV1. Compared to NE-COPD, VO2peak was 2.2 (95% CI 0.8, 3.6) and 2.1 (95% CI 0.8, 3.5) ml/kg/min lower in E-COPD when adjusted for FEV1Z-score and ppFEV1, respectively. In COPD, FEV1Z-score is positively associated with VO2peak. This association was stronger in E-COPD but did not differ statistically by phenotype. Both the association of FEV1 with VO2peak and the difference in VO2peak comparing COPD phenotypes seems independent of sex, age and height related variance in FEV1. Mechanisms leading to reduction in FEV1 may contribute to lower VO2peak in E-COPD

    The association between normal lung function and peak oxygen uptake in patients with exercise intolerance and coronary artery disease

    No full text
    In coronary artery disease (CAD), exercise intolerance with reduced oxygen uptake at peak exercise (VO2peak) is assumed to primarily reflect cardiovascular limitation. However, oxygen transport and utilization depends on an integrated organ response, to which the normal pulmonary system may influence overall capacity. This study aimed to investigate the associations between normal values of lung function measures and VO2peak in patients with exercise intolerance and CAD. We hypothesized that forced expiratory lung volume in one second (FEV1), transfer factor of the lung for carbon monoxide (TLCO) and TLCO/alveolar volume (TLCO/VA) above lower limits of normal (LLN) are associated with VO2peak in these patients. We assessed patients with established CAD (n = 93; 21 women) referred for evaluation due to exercise intolerance from primary care to a private specialist clinic in Norway. Lung function tests and cardiopulmonary exercise testing (CPET) were performed. Z-scores of FEV1, FEV1/forced vital capacity (FVC), TLCO and TLCO/VA were calculated using the Global Lung Function Initiative (GLI) software and LLN was defined as the fifth percentile (z = -1.645). Non-obstructive patients, defined by both FEV1 and FEV1/FVC above LLN, were assessed. The associations of FEV1Z-score, TLCOZ-score and TLCO/VAZ-score above LLN with VO2peak were investigated using linear regression models. Mean VO2peak ± standard deviation (SD) was 23.8 ± 6.4 ml/kg/min in men and 19.7 ± 4.4 ml/kg/min in women. On average, one SD increase in FEV1, TLCO and TLCO/VA were associated with 1.4 (95% CI 0.2, 2.6), 2.6 (95% CI 1.2, 4.0) and 1.3 (95% CI 0.2, 2.5) ml/kg/min higher VO2peak, respectively. In non-obstructive patients with exercise intolerance and CAD, FEV1, TLCO and TLCO/VA above LLN are positively associated with VO2peak. This may imply a clinically significant influence of normal lung function on exercise capacity in these patients

    Lung function and peak oxygen uptake in chronic obstructive pulmonary disease phenotypes with and without emphysema

    No full text
    Previous studies of associations of forced expiratory lung volume in one second (FEV1) with peak oxygen uptake (VO2peak) in chronic obstructive pulmonary disease (COPD) have not taken sex, age and height related variance of dynamic lung volumes into account. Nor have such demographic spread of spirometric measures been considered in studies comparing VO2peak between COPD phenotypes characterized by degree of emphysema. We aimed to assess the association of FEV1Z-score with VO2peak in COPD (n = 186) and investigate whether this association differs between emphysema (E-COPD) and non-emphysema (NE-COPD) phenotypes. Corresponding assessments using standardized percent predicted FEV1 (ppFEV1) were performed for comparison. Additionally, phenotype related differences in VO2peak were compared using FEV1Z-score and ppFEV1 as alternative expressions of FEV1. E-COPD and NE-COPD were defined by transfer factor of the lung for carbon monoxide below and above lower limits of normal (LLN), respectively. The associations were assessed in linear regression models. One unit reduction in FEV1Z-score was associated with 1.9 (95% CI 1.4, 2.5) ml/kg/min lower VO2peak. In stratified analyses, corresponding estimates were 2.2 (95% CI 1.4, 2.9) and 1.2 (95% CI 0.2, 2.2) ml/kg/min lower VO2peak in E-COPD and NE-COPD, respectively. The association did not differ statistically by COPD phenotype (p-value for interaction = 0.153). Similar estimates were obtained in analyses using standardized ppFEV1. Compared to NE-COPD, VO2peak was 2.2 (95% CI 0.8, 3.6) and 2.1 (95% CI 0.8, 3.5) ml/kg/min lower in E-COPD when adjusted for FEV1Z-score and ppFEV1, respectively. In COPD, FEV1Z-score is positively associated with VO2peak. This association was stronger in E-COPD but did not differ statistically by phenotype. Both the association of FEV1 with VO2peak and the difference in VO2peak comparing COPD phenotypes seems independent of sex, age and height related variance in FEV1. Mechanisms leading to reduction in FEV1 may contribute to lower VO2peak in E-COPD

    The association between normal lung function and peak oxygen uptake in patients with exercise intolerance and coronary artery disease

    No full text
    In coronary artery disease (CAD), exercise intolerance with reduced oxygen uptake at peak exercise (VO2peak) is assumed to primarily reflect cardiovascular limitation. However, oxygen transport and utilization depends on an integrated organ response, to which the normal pulmonary system may influence overall capacity. This study aimed to investigate the associations between normal values of lung function measures and VO2peak in patients with exercise intolerance and CAD. We hypothesized that forced expiratory lung volume in one second (FEV1), transfer factor of the lung for carbon monoxide (TLCO) and TLCO/alveolar volume (TLCO/VA) above lower limits of normal (LLN) are associated with VO2peak in these patients. We assessed patients with established CAD (n = 93; 21 women) referred for evaluation due to exercise intolerance from primary care to a private specialist clinic in Norway. Lung function tests and cardiopulmonary exercise testing (CPET) were performed. Z-scores of FEV1, FEV1/forced vital capacity (FVC), TLCO and TLCO/VA were calculated using the Global Lung Function Initiative (GLI) software and LLN was defined as the fifth percentile (z = -1.645). Non-obstructive patients, defined by both FEV1 and FEV1/FVC above LLN, were assessed. The associations of FEV1Z-score, TLCOZ-score and TLCO/VAZ-score above LLN with VO2peak were investigated using linear regression models. Mean VO2peak ± standard deviation (SD) was 23.8 ± 6.4 ml/kg/min in men and 19.7 ± 4.4 ml/kg/min in women. On average, one SD increase in FEV1, TLCO and TLCO/VA were associated with 1.4 (95% CI 0.2, 2.6), 2.6 (95% CI 1.2, 4.0) and 1.3 (95% CI 0.2, 2.5) ml/kg/min higher VO2peak, respectively. In non-obstructive patients with exercise intolerance and CAD, FEV1, TLCO and TLCO/VA above LLN are positively associated with VO2peak. This may imply a clinically significant influence of normal lung function on exercise capacity in these patients
    corecore