1,086 research outputs found

    On the optimality of gluing over scales

    Full text link
    We show that for every α>0\alpha > 0, there exist nn-point metric spaces (X,d) where every "scale" admits a Euclidean embedding with distortion at most α\alpha, but the whole space requires distortion at least Ω(αlogn)\Omega(\sqrt{\alpha \log n}). This shows that the scale-gluing lemma [Lee, SODA 2005] is tight, and disproves a conjecture stated there. This matching upper bound was known to be tight at both endpoints, i.e. when α=Θ(1)\alpha = \Theta(1) and α=Θ(logn)\alpha = \Theta(\log n), but nowhere in between. More specifically, we exhibit nn-point spaces with doubling constant λ\lambda requiring Euclidean distortion Ω(logλlogn)\Omega(\sqrt{\log \lambda \log n}), which also shows that the technique of "measured descent" [Krauthgamer, et. al., Geometric and Functional Analysis] is optimal. We extend this to obtain a similar tight result for LpL_p spaces with p>1p > 1.Comment: minor revision

    Controlling the structures of organic semiconductor–quantum dot nanocomposites through ligand shell chemistry

    Get PDF
    Nanocrystal quantum dots (QD) functionalised with active organic ligands hold significant promise as solar energy conversion materials, capable of multiexcitonic processes that could improve the efficiencies of single-junction photovoltaic devices. Small-angle X-ray and neutron scattering (SAXS and SANS) were used to characterize the structure of lead sulphide QDs post ligand-exchange with model acene-carboxylic acid ligands (benzoic acid, hydrocinnamic acid and naphthoic acid). Results demonstrate that hydrocinnamic acid and naphthoic acid ligated QDs form monolayer ligand shells, whilst benzoic acid ligated QDs possess ligand shells thicker than a monolayer. Further, the formation of a range of nanocomposite materials through the self-assembly of such acene-ligated QDs with an organic small-molecule semiconductor [5,12-bis((triisopropylsilyl)ethynyl)tetracene (TIPS-Tc)] is investigated. These materials are representative of a wider set of functional solar energy materials; here the focus is on structural studies, and their optoelectronic function is not investigated. As TIPS-Tc concentrations are increased, approaching the solubility limit, SANS data show that QD fractal-like features form, with structures possibly consistent with a diffusion limited aggregation mechanism. These, it is likely, act as heterogeneous nucleation agents for TIPS-Tc crystallization, generating agglomerates containing both QDs and TIPS-Tc. Within the TIPS-Tc crystals there seem to be three distinct QD morphologies: (i) at the crystallite centre (fractal-like QD aggregates acting as nucleating agents), (ii) trapped within the growing crystallite (giving rise to QD features ordered as sticky hard spheres), and (iii) a population of aggregate QDs at the periphery of the crystalline interface that were expelled from the growing TIPS-Tc crystal. Exposure of the QD:TIPS-Tc crystals to DMF vapour, a solvent known to be able to strip ligands from QDs, alters the spacing between PbS–hydrocinnamic acid and PbS–naphthoic acid ligated QD aggregate features. In contrast, for PbS–benzoic acid ligated QDs, DMF vapour exposure promotes the formation of ordered QD colloidal crystal type phases. This work thus demonstrates how different QD ligand chemistries control the interactions between QDs and an organic small molecule, leading to widely differing self-assembly processes. It highlights the unique capabilities of multiscale X-ray and neutron scattering in characterising such composite materials

    Interaction of desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism

    Get PDF
    Aims: To study the influence of some metallic elements of stainless steel 304 (SS 304) on the development and activity of a sulfate-reducing bacterial biofilm, using as comparison a reference nonmetallic material polymethylmethacrylate (PMMA). Methods and Results: Desulfovibrio desulfuricans biofilms were developed on SS 304 and on a reference nonmetallic material, PMMA, in a flow cell system. Steady-state biofilms were metabolically more active on SS 304 than on PMMA. Activity tests with bacteria from both biofilms at steady state also showed that the doubling time was lower for bacteria from SS 304 biofilms. The influence of chromium and nickel, elements of SS 304 composition, was also tested on a cellular suspension of Des. desulfuricans. Nickel decreased the bacterial doubling time, while chromium had no significant effect. Conclusions: The following mechanism is hypothesized: a Des. desulfuricans biofilm grown on a SS 304 surface in anaerobic conditions leads to the weakening of the metal passive layer and to the dissolution in the bulk phase of nickel ions that have a positive influence on the sulfate-reducing bacteria metabolism. This phenomenon may enhance the biocorrosion process. Significance and Impact of the Study: A better understanding of the interactions between metallic surfaces such as stainless steel and bacteria commonly implied in the corrosion phenomena which is primordial to fight biocorrosion.Programme Praxis XXI; University of Santiago de Compostela

    Expression of Luteinizing Hormone Receptor in the Gastrointestinal Tract in Patients with and without Dysmotility

    Get PDF
    Leuprolide is a gonadotropin-releasing hormone (GnRH) analog which has been shown to reduce symptoms in patients with irritable bowel syndrome (IBS) and chronic intestinal pseudo-obstruction (CIPO). The mechanism is not known, but one hypothesis is through down-modulation of luteinizing hormone (LH) secretion, a hormone whith antagonistic effect on gastrointestinal motility. However, presence of LH receptors in the gastrointestinal tract has never been described. The aim of this study was to find one possible way of action for leuprolide by examining the presence of the LH receptor, and if present, to see whether there was different expression in patients with or without dysmotility. Full-thickness biopsies from the bowel wall of patients with and without severe dysmotility were examined using immunohistochemistry staining. Biopsies showed expression of LH receptors on myenteric neurons and in glial cells, neutrophils, endothelial cells and mast cells. There was no difference in expression between patient groups

    Competition of charge, orbital, and ferromagnetic correlations in layered manganites

    Full text link
    The competition of charge, orbital, and ferromagnetic interactions in layered manganites is investigated by magneto-Raman scattering spectroscopy. We find that the colossal magnetoresistance effect in the layered compounds results from the interplay of the orbital and ferromagnetic double-exchange correlations. Inelastic scattering by charge-order fluctuations dominates the quasiparticle dynamics in the ferromagnetic-metal state. The scattering is suppressed at low frequencies, consistent with the opening of a charge-density wave pseudogap.Comment: 10 pages, 4 figure

    Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer

    Get PDF
    We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures

    Simultaneous Determination of Amlodipine and Valsartan

    Get PDF
    A spectrophotometric method was developed for simultaneous determination of amlodipine (Aml) and valsartan (Val) without previous separation. In this method amlodipine in methanolic solution was determined using zero order UV spectrophotometry by measuring its absorbency at 360.5 nm without any interference from valsartan

    Measurement of Pion Enhancement at Low Transverse Momentum and of the Delta-Resonance Abundance in Si-Nucleus Collisions at AGS Energy

    Get PDF
    We present measurements of the pion transverse momentum (p_t) spectra in central Si-nucleus collisions in the rapidity range 2.0<y<5.0 for p_t down to and including p_t=0. The data exhibit an enhanced pion yield at low p_t compared to what is expected for a purely thermal spectral shape. This enhancement is used to determine the Delta-resonance abundance at freeze-out. The results are consistent with a direct measurement of the Delta-resonance yield by reconstruction of proton-pion pairs and imply a temperature of the system at freeze-out close to 140 MeV.Comment: 12 pages + 4 figures (uuencoded at end-of-file

    TCR signal strength controls thymic differentiation of iNKT cell subsets.

    Get PDF
    During development in the thymus, invariant natural killer T (iNKT) cells commit to one of three major functionally different subsets, iNKT1, iNKT2, and iNKT17. Here, we show that T cell antigen receptor (TCR) signal strength governs the development of iNKT cell subsets, with strong signaling promoting iNKT2 and iNKT17 development. Altering TCR diversity or signaling diminishes iNKT2 and iNKT17 cell subset development in a cell-intrinsic manner. Decreased TCR signaling affects the persistence of Egr2 expression and the upregulation of PLZF. By genome-wide comparison of chromatin accessibility, we identify a subset of iNKT2-specific regulatory elements containing NFAT and Egr binding motifs that is less accessible in iNKT2 cells that develop from reduced TCR signaling. These data suggest that variable TCR signaling modulates regulatory element activity at NFAT and Egr binding sites exerting a determinative influence on the dynamics of gene enhancer accessibility and the developmental fate of iNKT cells
    corecore