14 research outputs found

    Global and regional trends of atmospheric sulfur

    Get PDF
    The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget

    Ciliated urns in <i>Archaster typicus</i> Müller and Troschel, 1840 (Echinodermata, Asteroidea, Archasteridae): present and future research

    No full text
    The presence of ciliated urns is known since long from the apodid, or synaptid, Holothuroidea (sea cucumbers). Similar, but more primitive organs have been reported from the sea-star Archaster typicus Miiller and Troschel 1840 in an earlier paper. The Archasteridae is the second echinoderm taxon in which such organs have been discovered. The presence of comparable urn organs of coelothelial origin in two different taxa which are definitely not related is shedding new light on the phylogenetic development of these organs as well as on their function, which is far from being understood. As an interim report on the status of our work we compare the urns in both echinoderm taxa, derive hypotheses and discuss them as a background for future investigations

    A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    Get PDF
    A global assessment of precipitation chemistry and deposition has been carried out under the direction of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Scientific Advisory Group for Precipitation Chemistry (SAG-PC). The assessment addressed three questions: (1) what do measurements and model estimates of precipitation chemistry and wet, dry and total deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity, and phosphorus show globally and regionally? (2) has the wet deposition of major ions changed since 2000 (and, where information and data are available, since 1990) and (3) what are the major gaps and uncertainties in our knowledge? To that end, regionally- representative measurements for two 3-year-averaging periods, 2000-2002 and 2005-2007, were compiled worldwide. Data from the 2000-2002 averaging period were combined with 2001 ensemble-mean modeling results from 21 global chemical transport models produced in Phase 1 of the Coordinated Model Studies Activities of the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). The measurement data and modeling results were used to generate global and regional maps of concentrations in precipitation and deposition. A major product of the assessment is a database of quality assured ion concentration and wet deposition data gathered from regional and national monitoring networks. The database is available for download from the World Data Centre for Precipitation Chemisty http://wdcpc.org/). The assessment concludes that global concentrations and deposition of sulfur and nitrogen are reasonably well characterized with levels generally highest near emission sources and more than an order of magnitude lower in areas largely free of anthropogenic influences. In many parts of the world, wet deposition of reduced nitrogen exceeds that of oxidized nitrogen and is increasing. Sulfur and nitrogen concentrations and deposition in North America and Europe have declined significantly in line with emission reduction policies. Major regions of the world, including South America, the more remote areas of North America, much of Asia, Africa, Oceania, polar regions, and all of the oceans, are inadequately sampled for all of the major ions found in wet and dry deposition, and particularly so for phosphorus, organic forms of nitrogen, and weak acids including carbonates and organic acids. Measurement-based inferential estimates of dry deposition are limited to sulfur and some nitrogen in only a few regions of the world and methods are highly uncertain. The assessment concludes with recommendations to address major gaps and uncertainties in global ion concentration and deposition measurements.JRC.H.4-Monitoring Agricultural Resource

    Global and regional trends of atmospheric sulfur

    No full text
    The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget

    Global and regional trends of atmospheric sulfur

    No full text
    The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget
    corecore