48 research outputs found

    Of Models and Tin Men -- a behavioural economics study of principal-agent problems in AI alignment using large-language models

    Full text link
    AI Alignment is often presented as an interaction between a single designer and an artificial agent in which the designer attempts to ensure the agent's behavior is consistent with its purpose, and risks arise solely because of conflicts caused by inadvertent misalignment between the utility function intended by the designer and the resulting internal utility function of the agent. With the advent of agents instantiated with large-language models (LLMs), which are typically pre-trained, we argue this does not capture the essential aspects of AI safety because in the real world there is not a one-to-one correspondence between designer and agent, and the many agents, both artificial and human, have heterogeneous values. Therefore, there is an economic aspect to AI safety and the principal-agent problem is likely to arise. In a principal-agent problem conflict arises because of information asymmetry together with inherent misalignment between the utility of the agent and its principal, and this inherent misalignment cannot be overcome by coercing the agent into adopting a desired utility function through training. We argue the assumptions underlying principal-agent problems are crucial to capturing the essence of safety problems involving pre-trained AI models in real-world situations. Taking an empirical approach to AI safety, we investigate how GPT models respond in principal-agent conflicts. We find that agents based on both GPT-3.5 and GPT-4 override their principal's objectives in a simple online shopping task, showing clear evidence of principal-agent conflict. Surprisingly, the earlier GPT-3.5 model exhibits more nuanced behaviour in response to changes in information asymmetry, whereas the later GPT-4 model is more rigid in adhering to its prior alignment. Our results highlight the importance of incorporating principles from economics into the alignment process.Comment: 11 pages, 7 figures. For code see https://github.com/phelps-sg/llm-cooperatio

    When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors

    Get PDF
    Background Guidelines from the World Health Organization for monitoring insecticide resistance in disease vectors recommend exposing insects to a predetermined discriminating dose of insecticide and recording the percentage mortality in the population. This standardized methodology has been widely adopted for malaria vectors and has provided valuable data on the spread and prevalence of resistance. However, understanding the potential impact of this resistance on malaria control requires a more quantitative measure of the strength or intensity of this resistance. Methods Bioassays were adapted to quantify the level of resistance to permethrin in laboratory colonies and field populations of Anopheles gambiae sensu lato. WHO susceptibility tube assays were used to produce data on mortality versus exposure time and CDC bottle bioassays were used to generate dose response data sets. A modified version of the CDC bottle bioassay, known as the Resistance Intensity Rapid Diagnostic Test (I-RDT), was also used to measure the knockdown and mortality after exposure to different multipliers of the diagnostic dose. Finally cone bioassays were used to assess mortality after exposure to insecticide treated nets. Results The time response assays were simple to perform but not suitable for highly resistant populations. After initial problems with stability of insecticide and bottle washing were resolved, the CDC bottle bioassay provided a reproducible, quantitative measure of resistance but there were challenges performing this under field conditions. The I-RDT was simple to perform and interpret although the end point selected (immediate knockdown versus 24 h mortality) could dramatically affect the interpretation of the data. The utility of the cone bioassays was dependent on net type and thus appropriate controls are needed to interpret the operational significance of these data sets. Conclusions Incorporating quantitative measures of resistance strength, and utilizing bioassays with field doses of insecticides, will help interpret the possible impact of resistance on vector control activities. Each method tested had different benefits and challenges and agreement on a common methodology would be beneficial so that data are generated in a standardized format. This type of quantitative data are an important prerequisite to linking resistance strength to epidemiological outcomes

    Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts.

    Get PDF
    Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Ã… resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses

    A population genomic unveiling of a new cryptic mosquito taxon within the malaria-transmitting Anopheles gambiae complex.

    Get PDF
    The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium. [Abstract copyright: © 2020 John Wiley & Sons Ltd.

    The effect of postexercise carbohydrate and protein ingestion on bone metabolism

    Get PDF
    Purpose To investigate the effect of feeding carbohydrate and protein (CHO+PRO), immediately or 2 h after an exhaustive run, on the bone turnover response in endurance runners. Methods 10 men (age 28±5 y, height 1.74±0.05 m, body mass 69.7±6.3 kg) performed treadmill running at 75%VO2max, until exhaustion, on three occasions. Blood was collected before and immediately, 1, 2, 3, 4 and 24 h post-exercise, for measurement of β-CTX, P1NP, PTH, PO4, ACa and Ca2+. This was a randomised, counterbalanced, placebo-controlled, single-blinded, cross-over study. The three trials were; i) placebo (PLA), PLA solution was ingested immediately and 2 h post-exercise, ii) immediate feeding (IF), CHO+PRO (1.5 g.kgBM-1 dextrose and 0.5 g.kgBM-1 whey) were ingested immediately post-exercise and PLA 2 h post-exercise, and iii) delayed feeding (DF), PLA was ingested immediately post-exercise and CHO+PRO solution 2 h post-exercise. Data were analysed using repeated measures ANOVA and post-hoc Tukey’s HSD. Results At 1 and 2 h post-exercise, β-CTX concentrations were lower in the IF trial than the DF and PLA trials (P≤0.001). At 3 h post-exercise, β-CTX concentrations were higher in the PLA trial than the IF (P≤0.001) and DF trials (P=0.026). At 4 h post-exercise, β-CTX concentrations were lower in the DF trial than the IF (P=0.003) and PLA trials (P≤0.001). At 4 h post-exercise, P1NP was higher in the IF trial than in DF (P=0.026) and PLA trials (P=0.001). At 3 h post-exercise, PTH was higher in the IF trial than the DF trial (P≤0.001). Conclusions Following exhaustive running, immediate ingestion of CHO+PRO may be beneficial, as it decreases bone resorption marker concentrations and increases bone formation marker concentrations; creating a more positive bone turnover balance

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    A novel tetra-primer ARMS-PCR approach for the molecular karyotyping of chromosomal inversion 2Ru in the main malaria vectors Anopheles gambiae and Anopheles coluzzii

    Get PDF
    Background: Chromosomal inversion polymorphisms have been associated with adaptive behavioral, physiological, morphological and life history traits in the two main Afrotropical malaria vectors, Anopheles coluzzii and Anopheles gambiae. The understanding of the adaptive value of chromosomal inversion systems is constrained by the feasibility of cytological karyotyping. In recent years in silico and molecular approaches have been developed for the genotyping of most widespread inversions (2La, 2Rb and 2Rc). The 2Ru inversion, spanning roughly 8% of chromosome 2R, is commonly polymorphic in West African populations of An. coluzzii and An. gambiae and shows clear increases in frequency with increasing rainfall seasonally and geographically. The aim of this work was to overcome the constraints of currently available cytological and high-throughput molecular assays by developing a simple PCR assay for genotyping the 2Ru inversion in individual specimens of both mosquito species. Methods: We designed tetra-primer amplification refractory mutation system (ARMS)-PCR assays based on five tag single-nucleotide polymorphisms (SNPs) previously shown to be strongly correlated with 2Ru inversion orientation. The most promising assay was validated against laboratory and field samples of An. coluzzii and An. gambiae karyotyped either cytogenetically or molecularly using a genotyping-in-thousands by sequencing (GT-seq) high-throughput approach that employs targeted sequencing of multiplexed PCR amplicons. Results: A successful assay was designed based on the tag SNP at position 2R, 31710303, which is highly predictive of the 2Ru genotype. The assay, which requires only one PCR, and no additional post-PCR processing other than electrophoresis, produced a clear banding pattern for 98.5% of the 454 specimens tested, which is a 96.7% agreement with established karyotyping methods. Sequences were obtained for nine of the An. coluzzii specimens manifesting 2Ru genotype discrepancies with GT-seq. Possible sources of these discordances are discussed. Conclusions: The tetra-primer ARMS-PCR assay represents an accurate, streamlined and cost-effective method for the molecular karyotyping of the 2Ru inversion in An. coluzzii and An. gambiae. Together with approaches already available for the other common polymorphic inversions, 2La, 2Rb and 2Rc, this assay will allow investigations of the adaptive value of the complex set of inversion systems observed in the two major malaria vectors in the Afrotropical region. Graphical Abstract

    Phase 1 dose-finding and pharmacokinetic study of eribulin-liposomal formulation in patients with solid tumours

    Get PDF
    Background: This phase 1 study examined the safety, tolerability, pharmacokinetics and preliminary efficacy of eribulin-liposomal formulation (eribulin-LF) in patients with advanced solid tumours. Methods:\ud Eligible patients with ECOG PS 0–1 were treated with eribulin-LF either on day 1 every 21 days (Schedule 1), or on days 1 and 15 every 28 days (Schedule 2). Doses ranged from 1.0 to 3.5 mg/m2, with dose escalation in a 3 + 3 design. The dose-expansion phase evaluated eribulin-LF in select tumour types. Primary objectives: maximum tolerated dose (MTD) and the recommended dose/schedule of eribulin-LF. Results: Totally, 58 patients were enroled (median age = 62 years). The MTD was 1.4 mg/m2 (Schedule 1) or 1.5 mg/m2 (Schedule 2), the latter dose selected for the dose-expansion phase. Dose-limiting toxicity (DLTs) in Schedule 1: hypophosphatemia and increased transaminase levels. DLTs in Schedule 2: stomatitis, increased alanine aminotransferase, neutropenia and febrile neutropenia. The pharmacokinetic profile of eribulin-LF showed a similar half-life to that of eribulin (~30 h), but with a 5-fold greater maximum serum concentration and a 40-fold greater area-under-the-curve. Eribulin-LF demonstrated clinical activity with approximately 10% of patients in both schedules achieving partial responses. Conclusions: Eribulin-LF was well tolerated with a favourable pharmacokinetic profile. Preliminary evidence of clinical activity in solid tumours was observed

    Long-Lasting Control of Anopheles arabiensis by a Single Spray Application of Micro-encapsulated Pirimiphos-methyl (Actellic(R) 300 CS).

    Get PDF
    Pyrethroid-resistant mosquitoes are an increasing threat to malaria vector control. The Global Plan for Insecticide Resistance Management (GPIRM) recommends rotation of non-pyrethroid insecticides for indoor residual spraying (IRS). The options from other classes are limited. The carbamate bendiocarb and the organophosphate pirimiphos-methyl (p-methyl) emulsifiable concentrate (EC) have a short residual duration of action, resulting in increased costs due to multiple spray cycles, and user fatigue. Encapsulation (CS) technology was used to extend the residual performance of p-methyl. Two novel p-methyl CS formulations were evaluated alongside the existing EC in laboratory bioassays and experimental hut trials in Tanzania between 2008-2010. Bioassays were carried out monthly on sprayed substrates of mud, concrete, plywood, and palm thatch to assess residual activity. Experimental huts were used to assess efficacy against wild free-flying Anopheles arabiensis, in terms of insecticide-induced mortality and blood-feeding inhibition. In laboratory bioassays of An. arabiensis and Culex quinquefasciatus both CS formulations produced high rates of mortality for significantly longer than the EC formulation on all substrates. On mud, the best performing CS killed >80% of An. arabiensis for five months and >50% for eight months, compared with one and two months, respectively, for the EC. In monthly bioassays of experimental hut walls the EC was ineffective shortly after spraying, while the best CS formulation killed more than 80% of An. arabiensis for five months on mud, and seven months on concrete. In experimental huts both CS and EC formulations killed high proportions of free-flying wild An. arabiensis for up to 12 months after spraying. There was no significant difference between treatments. All treatments provided considerable personal protection, with blood-feeding inhibition ranging from 9-49% over time. The long residual performance of p-methyl CS was consistent in bioassays and experimental huts. The CS outperformed the EC in laboratory and hut bioassays but the EC longevity in huts was unexpected. Long-lasting p-methyl CS formulations should be more effective than both p-methyl EC and bendiocarb considering a single spray could be sufficient for annual malaria control. IRS with p-methyl 300 CS is a timely addition to the limited portfolio of long-lasting residual insecticides
    corecore