9 research outputs found

    Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome

    Get PDF
    Drug discovery campaigns against COVID-19 are beginning to target the SARS-CoV-2 RNA genome. The highly conserved frameshift stimulation element (FSE), required for balanced expression of viral proteins, is a particularly attractive SARS-CoV-2 RNA target. Here we present a 6.9 Å resolution cryo-EM structure of the FSE (88 nucleotides, ~28 kDa), validated through an RNA nanostructure tagging method. The tertiary structure presents a topologically complex fold in which the 5′ end is threaded through a ring formed inside a three-stem pseudoknot. Guided by this structure, we develop antisense oligonucleotides that impair FSE function in frameshifting assays and knock down SARS-CoV-2 virus replication in A549-ACE2 cells at 100 nM concentration

    Determination of Structural Ensembles of Proteins: Restraining vs Reweighting

    No full text
    The conformational fluctuations of proteins can be described using structural ensembles. To address the challenge of determining these ensembles accurately, a wide range of strategies have recently been proposed to combine molecular dynamics simulations with experimental data. Quite generally, there are two ways of implementing this type of approach, either by applying structural restraints during a simulation, or by reweighting a posteriori the conformations from an a priori ensemble. It is not yet clear, however, whether these two approaches can offer ensembles of equivalent quality. The advantages of the reweighting method are that it can involve any type of starting simulation and that it enables the integration of experimental data after the simulations are run. A disadvantage, however, is that this procedure may be inaccurate when the a priori ensemble is of poor quality. Here, our goal is to systematically compare the restraining and reweighting approaches and to explore the conditions required for the reweighted ensembles to be accurate. Our results indicate that the reweighting approach is computationally efficient and can perform as well as the restraining approach when the a priori sampling is already relatively accurate. More generally, to enable an effective use of the reweighting approach by avoiding the pitfalls of poor sampling, we suggest metrics for the quality control of the reweighted ensembles

    Iodine-mediated one-pot intramolecular decarboxylation domino reaction for accessing functionalised 2-(1,3,4-oxadiazol-2-yl)anilines with carbonic anhydrase inhibitory action

    No full text
    A practical and transition metal-free one-pot domino synthesis of diversified (1,3,4-oxadiazol-2-yl)anilines has been developed employing isatins and hydrazides as the starting materials, in the presence of molecular iodine. The prominent feature of this domino process involves consecutive condensation, hydrolytic ring cleavage, and an intramolecular decarboxylation, in a one-pot process that leads to the oxidative formation of a C–O bond. Fluorescence properties of some of the representative molecules obtained in this way were studied. The synthesised 2-(1,3,4-oxadiazolo-2-yl)aniline-benzene sulphonamides (8a–o) were screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity. Most of the compounds exhibited low micromolar to nanomolar activity against human (h) isoforms hCA I, hCA II, hCA IV, and XII, with some compounds displaying selective CA inhibitory activity towards hCA II with KIs of 6.4–17.6 nM

    Assessment of three-dimensional RNA structure prediction in CASP15.

    No full text
    The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty-two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and x-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as noncanonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography

    Chemical and enzymatic strategies for bacterial and mammalian cell surface engineering

    No full text
    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies.ASTAR (Agency for Sci., Tech. and Research, S’pore)MOE (Min. of Education, S’pore
    corecore