198 research outputs found

    A nĂ©vadĂĄs motivĂĄciĂłi FelsƑ-HĂĄromszĂ©ken Ă©s a nĂ©v sĂșlya az identitĂĄsjelölƑ faktorok rendszerĂ©ben

    Get PDF
    Motivations for name giving in FelsƑ-HĂĄromszĂ©k (Transylvania) and the importance of names among identity markers This paper is based on the results of a 16-item questionnaire survey carried out in the small town of KĂ©zdivĂĄsĂĄrhely as well as in four settlements in its surroundings in the district of FelsƑ-HĂĄromszĂ©k (Transylvania), a region that is predominantly inhabited by Hungarians. The author presents the name giving practices and naming fashions of four generations: she compares the motivational systems of naming practices in the successive generations, highlighting trends. The author also examines the importance of such ethnic symbols as family and Christian names among identity markers of minorities. This aspect of name giving and name use is less frequently analysed in onomastics, though it offers useful data for sociology, sociolinguistics and contact linguistics as well

    Dendritic spikes control synaptic plasticity and somatic output in cerebellar Purkinje cells.

    Get PDF
    Neurons receive the vast majority of their input onto their dendrites. Dendrites express a plethora of voltage-gated channels. Regenerative, local events in dendrites and their role in the information transformation in single neurons are, however, poorly understood. This thesis investigates the basic properties and functional roles of dendritic spikes in cerebellar Purkinje cells using whole-cell patch clamp recordings from the dendrites and soma of rat Purkinje cells in brain slices. I show that parallel fibre (PF) evoked dendritic spikes are mediated by calcium channels, depend on membrane potential and stimulus intensity and are highly localized to the spiny branches receiving the synaptic input. A determining factor in the localization and spread of dendritic calcium spikes is the activation of large-conductance, calcium dependent potassium (BK) channels. I provide a strong link between dendritic spikes and the endocannabinoid dependent short-term synaptic plasticity, depolarization-induced suppression of excitation (DSE). Gating the dendritic spikes using stimulus intensity or membrane potential, I show that the threshold of DSE is identical to that of the dendritic spikes and the extent of DSE depends on the number of dendritic spikes. Blocking BK channels increases the spatial spread of dendritic spikes and enables current injection or climbing fibre (CF) evoked dendritic spikes to suppress PF inputs via DSE. By monitoring dendritic spikes during strong PF stimulation-induced long-term depression (LTD), I also provide a link between long-term synaptic plasticity and dendritic excitability. By showing that blocking CB1 cannabinoid receptors reduces the intensity requirement for LTD, I provide a connection between the short- and long-term changes in PF strength triggered by dendritic spikes I also investigate the effect dendritic spikes have on somatic action potential output. Contrary to pyramidal cells, where dendritic spikes boost the output of the neuron, the average Purkinje cell output becomes independent from the output strength for inputs triggering dendritic spikes. However, the temporal pattern of the output is strongly affected by dendritic spikes. I show that this phenomenon depends on BK channel activation resulting in a pause in somatic firing following dendritic spikes. In summary, I present a description of PF evoked local dendritic spikes and demonstrate their functional role in controlling the synaptic input and action potential output of cerebellar Purkinje cells

    jULIEs: nanostructured polytrodes for low traumatic extracellular recordings and stimulation in the mammalian brain

    Get PDF
    Objective.Extracellular microelectrode techniques are the most widely used approach to interrogate neuronal populations. However, regardless of the manufacturing method used, damage to the vasculature and circuit function during probe insertion remains a concern. This issue can be mitigated by minimising the footprint of the probe used. Reducing the size of probes typically requires either a reduction in the number of channels present in the probe, or a reduction in the individual channel area. Both lead to less effective coupling between the probe and extracellular signals of interest.Approach.Here, we show that continuously drawn SiO2-insulated ultra-microelectrode fibres offer an attractive substrate to address these challenges. Individual fibres can be fabricated to >10 m continuous stretches and a selection of diameters below 30”m with low resistance (<100 Ω mm-1) continuously conductive metal core of <10”m and atomically flat smooth shank surfaces. To optimize the properties of the miniaturised electrode-tissue interface, we electrodeposit rough Au structures followed by ∌20 nm IrOx film resulting in the reduction of the interfacial impedance to <500 kΩ at 1 kHz.Main results. We demonstrate that these ultra-low impedance electrodes can record and stimulate both single and multi-unit activity with minimal tissue disturbance and exceptional signal-to-noise ratio in both superficial (∌40”m) and deep (∌6 mm) structures of the mouse brain. Further, we show that sensor modifications are stable and probe manufacturing is reproducible.Significance.Minimally perturbing bidirectional neural interfacing can reveal circuit function in the mammalian brainin vivo

    Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology

    Get PDF
    Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed “blind,” meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum

    Targeting potassium channels to treat cerebellar ataxia

    Get PDF
    ObjectivePurkinje neuron dysfunction is associated with cerebellar ataxia. In a mouse model of spinocerebellar ataxia type 1 (SCA1), reduced potassium channel function contributes to altered membrane excitability resulting in impaired Purkinje neuron spiking. We sought to determine the relationship between altered membrane excitability and motor dysfunction in SCA1 mice.MethodsPatch‐clamp recordings in acute cerebellar slices and motor phenotype testing were used to identify pharmacologic agents which improve Purkinje neuron physiology and motor performance in SCA1 mice. Additionally, we retrospectively reviewed records of patients with SCA1 and other autosomal‐dominant SCAs with prominent Purkinje neuron involvement to determine whether currently approved potassium channel activators were tolerated.ResultsActivating calcium‐activated and subthreshold‐activated potassium channels improved Purkinje neuron spiking impairment in SCA1 mice (P < 0.05). Additionally, dendritic hyperexcitability was improved by activating subthreshold‐activated potassium channels but not calcium‐activated potassium channels (P < 0.01). Improving spiking and dendritic hyperexcitability through a combination of chlorzoxazone and baclofen produced sustained improvements in motor dysfunction in SCA1 mice (P < 0.01). Retrospective review of SCA patient records suggests that co‐treatment with chlorzoxazone and baclofen is tolerated.InterpretationTargeting both altered spiking and dendritic membrane excitability is associated with sustained improvements in motor performance in SCA1 mice, while targeting altered spiking alone produces only short‐term improvements in motor dysfunction. Potassium channel activators currently in clinical use are well tolerated and may provide benefit in SCA patients. Future clinical trials with potassium channel activators are warranted in cerebellar ataxia.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142893/1/acn3527.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142893/2/acn3527_am.pd

    Synaptic Responses Evoked by Tactile Stimuli in Purkinje Cells in Mouse Cerebellar Cortex Crus II In Vivo

    Get PDF
    Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs) via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old) HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0), the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs) in the somata of PCs. Application of SR95531, a specific GABA(A) receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs) in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A) receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice

    Dendritic Spike Saturation of Endogenous Calcium Buffer and Induction of Postsynaptic Cerebellar LTP

    Get PDF
    The architecture of parallel fiber axons contacting cerebellar Purkinje neurons retains spatial information over long distances. Parallel fiber synapses can trigger local dendritic calcium spikes, but whether and how this calcium signal leads to plastic changes that decode the parallel fiber input organization is unknown. By combining voltage and calcium imaging, we show that calcium signals, elicited by parallel fiber stimulation and mediated by voltage-gated calcium channels, increase non-linearly during high-frequency bursts of electrically constant calcium spikes, because they locally and transiently saturate the endogenous buffer. We demonstrate that these non-linear calcium signals, independently of NMDA or metabotropic glutamate receptor activation, can induce parallel fiber long-term potentiation. Two-photon imaging in coronal slices revealed that calcium signals inducing long-term potentiation can be observed by stimulating either the parallel fiber or the ascending fiber pathway. We propose that local dendritic calcium spikes, evoked by synaptic potentials, provide a unique mechanism to spatially decode parallel fiber signals into cerebellar circuitry changes

    Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Get PDF
    Copyright: © 2015 Sudhakar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNeurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.Peer reviewedFinal Published versio
    • 

    corecore