287 research outputs found
The first radial velocity measurements of a microlensing event: no evidence for the predicted binary
The gravitational microlensing technique allows the discovery of exoplanets
around stars distributed in the disk of the galaxy towards the bulge. However,
the alignment of two stars that led to the discovery is unique over the
timescale of a human life and cannot be re-observed. Moreover, the target host
is often very faint and located in a crowded region. These difficulties hamper
and often make impossible the follow-up of the target and study of its possible
companions. Gould et al. (2013) predicted the radial-velocity curve of a binary
system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing
event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT,
ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To
gather high-precision on faint targets of microlensing events, we proposed to
use the source star as a reference to measure the lens radial velocities. We
obtained ten radial velocities on the putative V=18 lens with a dispersion of
~100 m/s, spread over one year. Our measurements do not confirm the
microlensing prediction for this binary system. The most likely scenario is
that the assumed V=18 mag lens is actually a blend and not the primary lens
that is 2 magnitude fainter. Further observations and analyses are needed to
understand the microlensing observation and infer on the nature and
characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette
Photometry of K2 Campaign 9 bulge data
In its Campaign 9, K2 observed dense regions toward the Galactic bulge in
order to constrain the microlensing parallaxes and probe for free-floating
planets. Photometric reduction of the \emph{K2} bulge data poses a significant
challenge due to a combination of the very high stellar density, large pixels
of the Kepler camera, and the pointing drift of the spacecraft. Here we present
a new method to extract K2 photometry in dense stellar regions. We extended the
Causal Pixel Model developed for less-crowded fields, first by using the pixel
response function together with accurate astrometric grids, second by combining
signals from a few pixels, and third by simultaneously fitting for an
astrophysical model. We tested the method on two microlensing events and a
long-period eclipsing binary. The extracted K2 photometry is an order of
magnitude more precise than the photometry from other method
RoboTAP: Target priorities for robotic microlensing observations
Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network.
Aims. Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies.
Methods. Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events.
Results. We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys
<i>Spitzer</i> microlens measurement of a massive remnant in a well-separated binary
We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the "microlens parallax" effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations
OGLE-2014-BLG-0289: Precise Characterization of a Quintuple-peak Gravitational Microlensing Event
We present the analysis of the binary-microlensing event OGLE-2014-BLG-0289. The event light curve exhibits five very unusual peaks, four of which were produced by caustic crossings and the other by a cusp approach. It is found that the quintuple-peak features of the light curve provide tight constraints on the source trajectory, enabling us to precisely and accurately measure the microlensing parallax πE. Furthermore, the three resolved caustics allow us to measure the angular Einstein radius θE. From the combination of πE and θE, the physical lens parameters are uniquely determined. It is found that the lens is a binary composed of two M dwarfs with masses M1 = 0.52 ± 0.04 M⊙ and M2 = 0.42 ± 0.03 M⊙ separated in projection by a⊥ = 6.4 ± 0.5 au. The lens is located in the disk with a distance of DL = 3.3 ± 0.3 kpc. The reason for the absence of a lensing signal in the Spitzer data is that the time of observation corresponds to the flat region of the light curve
MOA-2016-BLG-227Lb: A Massive Planet Characterized by Combining Light-curve Analysis and Keck AO Imaging
We report the discovery of a microlensing planet—MOA-2016-BLG-227Lb—with a large planet/host mass ratio of q ≃ 9 × 10−3. This event was located near the K2 Campaign 9 field that was observed by a large number of telescopes. As a result, the event was in the microlensing survey area of a number of these telescopes, and this enabled good coverage of the planetary light-curve signal. High angular resolution adaptive optics images from the Keck telescope reveal excess flux at the position of the source above the flux of the source star, as indicated by the light-curve model. This excess flux could be due to the lens star, but it could also be due to a companion to the source or lens star, or even an unrelated star. We consider all these possibilities in a Bayesian analysis in the context of a standard Galactic model. Our analysis indicates that it is unlikely that a large fraction of the excess flux comes from the lens, unless solar-type stars are much more likely to host planets of this mass ratio than lower mass stars. We recommend that a method similar to the one developed in this paper be used for other events with high angular resolution follow-up observations when the follow-up observations are insufficient to measure the lens–source relative proper motion
Ogle-2018-Blg-1185B: A Low-Mass Microlensing Planet Orbiting A Low-Mass Dwarf
We report an analysis of the planetary microlensing event OGLE-2018-BLG-1185, which was observed by a large number of ground-based telescopes and by the Spitzer Space Telescope. The ground-based light curve indicates a low planet-host star mass ratio of q = (6.9 +/- 0.2) x 10(-5), which is near the peak of the wide-orbit exoplanet mass-ratio distribution. We estimate the host star and planet masses with a Bayesian analysis using the measured angular Einstein radius under the assumption that stars of all masses have an equal probability of hosting the planet. The flux variation observed by Spitzer is marginal, but still places a constraint on the microlens parallax. Imposing a conservative constraint that this flux variation should be Delta f (Spz) \u3c 4 instrumental flux units yields a host mass of M-host = 0.37(-0.21)(+0.35) M-circle dot and a planet mass of m(p) = 8.4(-4.7)(+7.9) M-circle plus. A Bayesian analysis including the full parallax constraint from Spitzer suggests smaller host star and planet masses of M-host = 0.091(-0.018)(+0.064) M-circle dot m(p) = 2.1(-0.4)(+1.5) M-circle plus, respectively. Future high-resolution imaging observations with the Hubble Space Telescope or Extremely Large Telescope could distinguish between these two scenarios and help reveal the planetary system properties in more detail
- …