102 research outputs found
Science-Technology-Society (STS): a new paradigm in Science Education
publication-status: Publishedtypes: ArticleChanges in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field of science education. The success of science education reform depends on teachers' ability to integrate the philosophy and practices of current programs of science education reform with their existing philosophy. Thus, when considering the STS approach to science education, teacher beliefs about STS implementation require attention. Without this attention, negative beliefs concerning STS implementation and inquiry learning could defeat the reform movements emphasizing STS. This article argues the role of STS in science education and the importance of considering science teachers' beliefs about STS in implementing significant reforms in science education
Priorities for mitigating greenhouse gas and ammonia emissions to meet UK policy targets
Agriculture is essential for providing food and maintaining food security while concurrently delivering multiple other ecosystem services. However, agricultural systems are generally a net source of greenhouse gases and ammonia. They, therefore, need to substantively contribute to climate change mitigation and net zero ambitions. It is widely acknowledged that there is a need to further reduce and mitigate emissions across sectors, including agriculture to address the climate emergency and emissions gap. This discussion paper outlines a collation of opinions from a range of experts within agricultural research and advisory roles following a greenhouse gas and ammonia emission mitigation workshop held in the UK in March 2022. The meeting identified the top mitigation priorities within the UK’s agricultural sector to achieve reductions in greenhouse gases and ammonia that are compatible with policy targets. In addition, experts provided an overview of what they believe are the key knowledge gaps, future opportunities and co-benefits to mitigation practices as well as indicating the potential barriers to uptake for mitigation scenarios discussed
Greenhouse gas and ammonia emission mitigation priorities for UK policy targets
Acknowledgements Many thanks to the Association of Applied Biologist’s for organising and hosting the ‘Agricultural greenhouse gases and ammonia mitigation: Solutions, challenges, and opportunities’ workshop. This work was supported with funding from the Scottish Government’s Strategic Research Programme (2022-2027, C2-1 SRUC) and BBSRC (BBS/E/C/000I0320 and BBS/E/C/000I0330). We also acknowledge support from UKRI694 BBSRC (United Kingdom Research and Innovation-Biotechnology and Biological Sciences 695 Research Council; United Kingdom) via grants BBS/E/C/000I0320 and BBS/E/C/000I0330. and Rothamsted Research's Science Initiative Catalyst Award (SICA) supported by BBSRC.Peer reviewedPublisher PD
Chronological characterization of medieval villages in Northern Iberia: A multi-integrated approach
Defining the occupation sequence of medieval rural farming sites in Northern Iberia is complicated, since they feature low density of stratigraphic relationships and few finds and because of the intensive agricultural activities developed there during the last few decades. This paper presents the chronological characterization of the medieval village of Zornoztegi, located in the Basque Country, in the province of Alava. At this site, dwellings extend over an area of approximately two hectares and consist mainly of negative structures excavated in the bedrock. Radiocarbon dating measurements carried out on 32 samples, together with mortar optical microscopic analyses and other information obtained from stratigraphic relationships, changes in the settlement organization and the study of material culture, allowed structuring and characterizing the occupation sequence of the site of Zornoztegi. Furthermore, Bayesian statistics was used to reduce the range of the calibrated dates and to refine the chronology of the sequence
Changing patterns of eastern Mediterranean shellfish exploitation in the Late Glacial and Early Holocene: Oxygen isotope evidence from gastropod in Epipaleolithic to Neolithic human occupation layers at the Haua Fteah cave, Libya
The seasonal pattern of shellfish foraging at the archaeological site of Haua Fteah in the Gebel Akhdar, Libya was investigated from the Epipaleolithic to the Neolithic via oxygen isotope (d18O) analyses of the topshell Phorcus (Osilinus) turbinatus. To validate this species as faithful year-round palaeoenvironmental recorder, the intra-annual variability of d18O in modern shells and sea water was analysed and compared with measured sea surface temperature (SST). The shells were found to be good candidates for seasonal shellfish forging studies as they preserve nearly the complete annual SST cycle in their shell d18O with minimal slowing or stoppage of growth. During the terminal Pleistocene Early Epipaleolithic (locally known as the Oranian, with modeled dates of 17.2-12.5 ka at 2sigma probability, Douka et al., 2014), analysis of archaeological specimens indicates that shellfish were foraged year-round. This complements other evidence from the archaeological record that shows that the cave was more intensively occupied in this period than before or afterwards. This finding is significant as the period of the Oranian was the coldest and driest phase of the last glacial cycle in the Gebel Akhdar, adding weight to the theory that the Gebel Akhdar may have served as a refugium for humans in North Africa during times of global climatic extremes. Mollusc exploitation in the Latest Pleistocene and Early Holocene, during the Late Epipaleolithic (locally known as the Capsian, c. 12.7 to 9 ka) and the Neolithic (c. 8.5 to 5.4 ka), occurred predominantly during winter. Other evidence from these archaeological phases shows that hunting activities occurred during the warmer months. Therefore, the timing of Holocene shellfish exploitation in the Gebel Akhdar may have been influenced by the seasonal availability of other resources at these times and possibly shellfish were used as a dietary supplement when other foods were less abundant
Deficiency of TET3 leads to a genome-wide DNA hypermethylation episignature in human whole blood (vol 6, 92, 2021)
Genetics of disease, diagnosis and treatmen
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
An inherited neurological disorder of the St Bernard dog characterised by unusual cerebellar cortical dysplasia
No abstract available
Recommended from our members
Protective materials with real-time puncture detection capability
The protection of workers from chemical, biological, or radiological hazards requires the use of protective materials that can maintain their integrity during use. An accidental puncture in the protective material can result in a significant exposure to the worker. A five ply material has been developed that incorporates two layers of an electrically conductive polymer sandwiched between three layers of a nonconductive polymer. A normally open circuit that is connected between the conductive layers will be closed by puncturing the material with either a conductive or nonconductive object. This can be used to activate an audible alarm or visual beacon to warn the worker of a breach in the integrity of the material. The worker is not connected to the circuit, and the puncture can be detected in real-time, even when caused by a nonconductor
- …