12 research outputs found
High-temperature Hydrogen Chloride Releases from Mixtures of Sodium Chloride with Sulfates: Implications for the Chlorine-Mineralogy as Determined by the Sample Analysis at Mars Instrument on the Curiosity Rover in Gale Crater, Mars
Hydrogen chloride releases above 500 C occurred in several samples analyzed by the Sample Analysis at Mars (SAM) evolved gas analyzer on the Curiosity rover in Gale crater. These have been attributed to reactions between chlorides (original or from oxychlorine decomposition) and water. Some of these HCl releases that peaked below the melting temperature of common chlorides did not co-evolve with oxygen or water, and were not explained by laboratory analog work (Figure 1). Therefore, these HCl releases were not caused by MgCl2 or soley due to reactions between water and melting chlorides. The goal of this work was to explain the HCl releases that did not co-evolve with oxygen or water and occurred below the melting point of common chlorides, which have not been explained by previous laboratory analog work. This work specifically evaluates the role of evolved SO2 in the production of HCl
Recommended from our members
Thermochemical Modelling of Fluid-Rock Reactions in Vera Rubin ridge, Gale Crater, Mars.
Vera Rubin Ridge (VRR) in Gale Crater, Mars, is a ~200 m wide ~6.5 km long northeast- southwest resistant geomorphological feature on the northern slopes of Aeolis Mons (Mt. Sharp). Analysis of Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) orbital data showed that VRR has strong hematite spectral signatures. Hematite was confirmed in-situ at VRR with the Curiosity rover and has been shown to be present throughout the Mur- ray formation. VRR is stratigraphically continu-ous with the underlying Murray formation. Previous thermochemical modelling showed how hematite at VRR could have formed as the result of open-system weathering at high water/rock ratios. Here we use thermochemical modelling to investigate possible reaction pathways for the hematite-clay- bearing assemblage observed at VRR, starting from an identified least-altered (minimum clay content) Murray composition, and a Mars basal brine
Recommended from our members
Enhanced groundwater flow on and below Vera Rubin ridge, the Murray Formation, Gale Crater: Evidence from thermochemical modeling
NASAs Mars Science Laboratory Curiosity rover has been exploring Vera Rubin ridge (VRR), part of the Murray formation in Gale crater, Mars, between sol 1809 and 2302. Evidence for Fe-oxides and phyllosilicates in mineralogical and geochemical data for this region was returned by Curiosity [1-5]. We applied thermochemical modeling to con-strain the formation conditions of the phyllosilicate-hematite assemblage identified on and below VRR. Average alteration compositions for the Murray formation on and below VRR were derived using CheMin and APXS data. These compositions were reacted with Gale Portage Water (GPW) between 25100 C and for 10% and 50% Fe3+/Fetot of the host rock [6]. Here we summarize models run at 50 C and 10% Fe3+/Fetot for alteration compositions derived from Murray host rock compositions
Recommended from our members
Igneous compositions preserved in Gale crater's geological record
Gale crater’s geological record has two stratigraphic groups deposited in an early Hesperian fluviolacustrine system[1, 2]. The Bradbury Group (sols 1-750) is dominated by fluvial conglomerate and sandstone with lacustrine mudstone in Yellowknife Bay[1,2]. The Mt Sharp Group (Murray formation) is mainly well laminated lacustrine mudstone[2]. We have analysed NASA Curiosity rover ChemCam[3] observation point compositions for targets up to sol 1482 that have hit in situ host rock lacking obvious diagenetic features. ChemCam data are plotted on scatter and density contour plots for their associated stratigraphic units to replicate whole rock composition[4]. Our results show that coarse grained (>1 mm) targets are dominated by trachybasalt[5] and subalkaline basalt[5] igneous endmembers. Sandstone (0.062 – 1 mm) targets indicate a mixture of subalkaline basalt[5], trachybasalt[5] and potassic igneous[6] sources. Finally, mudstone units are dominated by the subalkaline basalt[5] at Yellowknife Bay, and a relatively silica-rich, subalkaline basalt endmember in most of the Murray formation[4], with an even more silica-rich volcanic component at Marias Pass[7]. This demonstrates that Gale crater sediments record a variety of igneous compositions, with subalkaline basalts dominant, but also including lesser amounts of alkaline and silica oversaturated igneous components.
References: [1] Grotzinger et al. (2014) doi:10.1126/science.1242777, [2] Grotzinger et al. (2015) doi:10.1126/science.aac7575. [3] Wiens et al. (2012) doi:10.1007/s11214-012-9902-4. [4] Bedford et al. (subm.) GCA. [5] Edwards et al., (2017) MAPS, doi:10.1111/maps.12953. [6] Treiman et al. (2016) doi: 10.1002/2015JE004932. [7] Morris et al. (2016) doi: 10.1073/pnas.1607098113
Constraining Alteration Processes Along the Siccar Point Group Unconformity, Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument
International audienceResults from the Sample Analysis at Mars (SAM)-evolved gas analyzer (EGA) on board the Mars Science Laboratory Curiosity rover constrained the alteration history and habitability potential of rocks sampled across the Siccar Point unconformity in Gale crater.The Glasgow member (Gm) mudstone just below the unconformity had evidence of acid sulfate or Si-poor brine alteration of Fe-smectite to Fe amorphous phases, leaching loss of Fe-Mg-sulfate and exchange of unfractionated sulfur 34S (δ34S=2±7‰) with enriched 34S (20±5‰, V-CDT). Carbon abundances did not significantly change (322-661 μgC/g) consistent with carbon stabilization by amorphous Al- and Fe-hydroxide phases. The Gm mudstone had no detectable oxychlorine and extremely low nitrate. Nitrate (0.06 wt.% NO3), oxychlorine (0.13 wt% ClO4), high C (1472 μg C/g), and low Fe/Mg-sulfate concentration (0.24 wt.% SO3) depleted in 34S (δ34S = -27‰ ± 7), were detected in the Stimson formation (Sf) eolian sandstone above the unconformity. Redox disequilibrium through the detections of iron sulfide and sulfate supported limited aqueous processes in the Sf sandstone. Si-poor brines or acidic fluids altered the Gm mudstone just below the unconformity but did not alter underlying Gm mudstones further from the contact. Chemical differences between the Sf and Gm rocks suggested that fluid interaction was minimal between the Sf and Gm rocks. These results suggested that the Gm rocks were altered by subsurface fluids after the Sf placement. Aqueous processes along the unconformity could have provided habitable conditions and in some cases, C and N levels could have supported heterotrophic microbial populations
Recommended from our members
Mineralogical Investigation of Mg-Sulfate at the Canaima Drill Site, Gale Crater, Mars
For the first time on Mars, the crystalline magnesium-sulfate mineral starkeyite (MgSO4‧4H2O) was definitively identified using the CheMin X-ray diffraction instrument at Gale crater. At the Canaima drill site, starkeyite along with amorphous MgSO4‧nH2O are among the “polyhydrated Mg-sulfates” interpreted in orbital reflectance spectra. Mg-sulfates are good climate indicators as they are very responsive to changes in temperature and relative humidity. We hypothesize that, through evaporation, Mg-sulfates formed at the end of brine evolution when ion concentrations became saturated and precipitated on the surface or near sub-surface as either epsomite or meridianiite. These minerals were subsequently dehydrated later to starkeyite and amorphous MgSO4‧nH2O in response to a drier Mars. At Canaima, starkeyite is stable and would form during the warmer Mars summers. Due to very slow kinetics at the low Mars winter temperatures, starkeyite and amorphous MgSO4‧nH2O would be resistant to recrystallize to more hydrous forms and thus likely persist year-round. During the course of analyses, starkeyite transforms into amorphous MgSO4‧nH2O inside the rover body due to the elevated temperature and greatly reduced relative humidity compared to the martian surface at the Canaima drill site. It is possible that crystalline sulfate minerals existed in earlier samples measured by CheMin but altered inside the rover before they could be analyzed. Starkeyite is most likely prevalent in the subsurface, whereas both starkeyite and amorphous MgSO4‧nH2O are likely present on the surface as starkeyite could partially transform into amorphous MgSO4‧nH2O due to direct solar heating. © 2023. The Authors.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Curiosity at Gale Crater, Mars: Characterization and analysis of the rocknest sand shadow
The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations