109 research outputs found

    Liposomes and nanotechnology in drug development: focus on neurological targets

    Get PDF
    Neurological diseases represent a medical, social, and economic problem of paramount importance in developed countries. Although their etiology is generally known, developing therapeutic interventions for the central nervous system is challenging due to the impermeability of the blood-brain barrier. Thus, the fight against neurological diseases usually struggles "at the gates" of the brain. Flooding the bloodstream with drugs, where only a minor fraction reaches its target therapeutic site, is an inefficient, expensive, and dangerous procedure, because of the risk of side effects at nontargeted sites. Currently, advances in the field of nanotechnology have enabled development of a generation of multifunctional molecular platforms that are capable of transporting drugs across the blood-brain barrier, targeting specific cell types or functional states within the brain, releasing drugs in a controlled manner, and enabling visualization of processes in vivo using conventional imaging systems. The marriage between drug delivery and molecular imaging disciplines has resulted in a relatively new discipline, known as theranostics, which represents the basis of the concept of personalized medicine. In this study, we review the concepts of the blood-brain barrier and the strategies used to traverse/bypass it, the role of nanotechnology in theranostics, the wide range of nanoparticles (with emphasis on liposomes) that can be used as stealth drug carriers, imaging probes and targeting devices for the treatment of neurological diseases, and the targets and targeting strategies envisaged in the treatment of different types of brain pathology

    Study of protein expresion [sic] in peri-infarct tissue after cerebral ischemia

    Get PDF
    In this work, we report our study of protein expression in rat peri-infarct tissue, 48 h after the induction of permanent focal cerebral ischemia. Two proteomic approaches, gel electrophoresis with mass spectrometry and combined fractional diagonal chromatography (COFRADIC), were performed using tissue samples from the periphery of the induced cerebral ischemic lesions, using tissue from the contra-lateral hemisphere as a control. Several protein spots (3408) were identified by gel electrophoresis, and 11 showed significant differences in expression between peri-infarct and contralateral tissues (at least 3-fold, p < 0.05). Using COFRADIC, 5412 proteins were identified, with 72 showing a difference in expression. Apart from blood-related proteins (such as serum albumin), both techniques showed that the 70 kDa family of heat shock proteins were highly expressed in the peri-infarct tissue. Further studies by 1D and 2D western blotting and immunohistochemistry revealed that only one member of this family (the inducible form, HSP72 or HSP70i) is specifically expressed by the peri-infarct tissue, while the majority of this family (the constitutive form, HSC70 or HSP70c) is expressed in the whole brain. Our data support that HSP72 is a suitable biomarker of peri-infarct tissue in the ischemic brain

    Interleukin-10 facilitates the selection of patients for systemic thrombolysis

    Get PDF
    Background: Clinical-Diffusion mismatch (CDM; NIHSS score ≥8 & DWI lesion volume ≤25 mL) and Perfusion-Diffusion mismatch (PDM; difference >20% between initial DWI and MTT lesion volumes) have been proposed as surrogates for ischemic brains that are at risk of infarction. However, their utility to improve the selection of patients for thrombolytic treatment remains controversial. Our aim was to identify molecular biomarkers that can be used with neuroimaging to facilitate the selection of ischemic stroke patients for systemic thrombolysis. Methods: We prospectively studied 595 patients with ischemic stroke within 12 h of the stroke onset. A total of 184 patients received thrombolytic treatment according to the SITS-MOST criteria. DWI and MTT volumes were measured at admission. The main outcome variable was good functional outcome at 3 months (modified Rankin scale <3). Serum levels of glutamate (Glu), IL-10, TNF-α, IL-6, NSE, and active MMP-9 also were determined at admission. Results: Patients treated with t-PA who presented with PDM had higher IL-10 levels at admission (p < 0.0001). In contrast, patients with CDM had higher levels of IL-10 (p < 0.0001) as well as Glu and TNF-α (all p < 0.05) and lower levels of NSE and active MMP-9 (all p < 0.0001). IL-10 ≥ 30 pg/mL predicts good functional outcome at 3 months with a specificity of 88% and a sensitibity of 86%. IL-10 levels ≥30 pg/mL independently in both patients with PDM (OR, 18.9) and CDM (OR, 7.5), after an adjustment for covariates. Conclusions: Serum levels of IL-10 facilitate the selection of ischemic stroke patients with CDM and PDM for systemic thrombolysis

    In Vivo Theranostics at the Peri-Infarct Region in Cerebral Ischemia

    Get PDF
    The use of theranostics in neurosciences has been rare to date because of the limitations imposed on the free delivery of substances to the brain by the blood-brain barrier. Here we report the development of a theranostic system for the treatment of stroke, a leading cause of death and disability in developed countries. We first performed a series of proteomic, immunoblotting and immunohistological studies to characterize the expression of molecular biomarkers for the so-called peri-infarct tissue, a key region of the brain for stroke treatment. We confirmed that the HSP72 protein is a suitable biomarker for the peri-infarct region, as it is selectively expressed by at-risk tissue for up to 7 days following cerebral ischemia. We also describe the development of anti-HSP72 vectorized stealth immunoliposomes containing imaging probes to make them traceable by conventional imaging techniques (fluorescence and MRI) that were used to encapsulate a therapeutic agent (citicoline) for the treatment of cerebral ischemia. We tested the molecular recognition capabilities of these nano-platforms in vitro together with their diagnostic and therapeutic properties in vivo, in an animal model of cerebral ischemia. Using MRI, we found that 80% of vectorized liposomes were located on the periphery of the ischemic lesion, and animals treated with citicoline encapsulated on these liposomes presented lesion volumes up to 30% smaller than animals treated with free (non-encapsulated) drugs. Our results show the potential of nanotechnology for the development of effective tools for the treatment of neurological diseases

    Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia

    Get PDF
    Blood glutamate scavenging is a novel and attractive protecting strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. Glutamate oxaloacetate transaminase 1 (GOT1) activation by means of oxaloacetate administration has been used to reduce the glutamate concentration in the blood. However, the protective effect of the administration of the recombinant GOT1 (rGOT1) enzyme has not been yet addressed in cerebral ischemia. The aim of this study was to analyze the protective effect of an effective dose of oxaloacetate and the human rGOT1 alone and in combination with a non-effective dose of oxaloacetate in an animal model of ischemic stroke. Sixty rats were subjected to a transient middle cerebral artery occlusion (MCAO). Infarct volumes were assessed by magnetic resonance imaging (MRI) before treatment administration, and 24 h and 7 days after MCAO. Brain glutamate levels were determined by in vivo MR spectroscopy (MRS) during artery occlusion (80 min) and reperfusion (180 min). GOT activity and serum glutamate concentration were analyzed during the occlusion and reperfusion period. Somatosensory test was performed at baseline and 7 days after MCAO. The three treatments tested induced a reduction in serum and brain glutamate levels, resulting in a reduction in infarct volume and sensorimotor deficit. Protective effect of rGOT1 supplemented with oxaloacetate at 7 days persists even when treatment was delayed until at least 2 h after onset of ischemia. In conclusion, our findings indicate that the combination of human rGOT1 with low doses of oxaloacetate seems to be a successful approach for stroke treatment.Ministeiro de Economía y Competitividad de EspañaXunta de Galicia /Consellería Economía IndustriaXunta de Galicia/ Consellería EducaciónInstituto de Salud Carlos IIISpanish Research Network on Cerebrovascular Diseases RETICS-INVICTUSFundación Mútua MadrileñaEuropean Union program FEDEREspaña. Ministerio de Economía y Competitividad/SAF2011-30517Xunta de Galicia /Consellería Economía Industria/10PXIB918282PRXunta de Galicia / Consellería Educación/ CN2011/010Instituto de Salud Carlos III/PI11/00909Instituto de Salud Carlos III/CP12/03121Spanish Research Network on Cerebrovascular Diseases RETICS-INVICTUS /RD12/0014Instituto de Salud Carlos III/PI10/00449Instituto de Salud Carlos III/PI12/0311

    Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia

    Get PDF
    Brain ischaemia (stroke) triggers an intense inflammatory response predominately mediated by the accumulation of inflammatory cells and mediators in the ischaemic brain. In this context, regulatory T (Treg) cells, a subpopulation of CD4 + T cells with immunosuppressive and anti-inflammatory properties, are activated in the late stages of the disease. To date, the potential therapeutic usefulness of Treg cells has not been tested. In this study, we aimed to investigate whether Treg cells exert protection/repair following stroke. Both the adoptive transfer of Treg cells into ischaemic rats and the stimulation of endogenous T-cell proliferation using a CD28 superagonist reduced the infarct size at 3-28 days following the ischaemic insult. Moreover, T cell-treated animals had higher levels of FoxP3 and lower levels of IL-1β, CD11b+ and CD68+ cells in the infarcted hemisphere when compared with control animals. However, T-cell treatment did not alter the rate of proliferation of NeuN-, NCAM- or CD31-positive cells, thereby ruling out neurogenesis and angiogenesis in protection. These results suggest that adoptive transfer of T cells is a promising therapeutic strategy against the neurological consequences of stroke

    Cerebellar alterations in a model of Down syndrome: The role of the Dyrk1A gene

    Get PDF
    Down syndrome (DS) is characterized by a marked reduction in the size of the brain and cerebellum. These changes play an important role in the motor alterations and cognitive disabilities observed in this condition. The Ts65Dn (TS) mouse, the most commonly used model of DS, reflects many DS phenotypes, including alterations in cerebellar morphology. One of the genes that is overexpressed in both individuals with DS and TS mice is DYRK1A/Dyrk1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which has been implicated in the altered cerebellar structural and functional phenotypes observed in both populations. The aim of this study was to evaluate the effect of Dyrk1A on different alterations observed in the cerebellum of TS animals. TS mice were crossed with Dyrk1A +/- KO mice to obtain mice with a triplicate segment of Mmu16 that included Dyrk1A (TS +/+/+), mice with triplicate copies of the same genes that carried only two copies of Dyrk1A (TS +/+/-), euploid mice that expressed a normal dose of Dyrk1A (CO +/+) and CO animals with a single copy of Dyrk1A (CO +/-). Male mice were used for all experiments. The normalization of the Dyrk1A gene dosage did not rescue the reduced cerebellar volume. However, it increased the size of the granular and molecular layers, the densities of granular and Purkinje cells, and dendritic arborization. Furthermore, it improved the excitatory/inhibitory balance and walking pattern of TS +/+/- mice. These results support the hypothesis that Dyrk1A is involved in some of the structural and functional cerebellar phenotypes observed in the TS mouse model.This work was supported by grants from the Jerome Lejeune Foundation and Fundación Tatiana Pérez de Guzmán el Bueno and the Spanish Ministry of Economy and Competitiveness (PSI-2016-76194-R, AEI/FEDER, EU) and “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0037)” from Spain

    Assessing the Potential of Molecular Imaging for Myelin Quantification in Organotypic Cultures

    Get PDF
    Ex vivo models for the noninvasive study of myelin-related diseases represent an essential tool to understand the mechanisms of diseases and develop therapies against them. Herein, we assessed the potential of multimodal imaging traceable myelin-targeting liposomes to quantify myelin in organotypic cultures. Methods: MRI testing was used to image mouse cerebellar tissue sections and organotypic cultures. Demyelination was induced by lysolecithin treatment. Myelin-targeting liposomes were synthetized and characterized, and their capacity to quantify myelin was tested by fluorescence imaging. Results: Imaging of freshly excised tissue sections ranging from 300 µm to 1 mm in thickness was achieved with good contrast between white (WM) and gray matter (GM) using T2w MRI. The typical loss of stiffness, WM structures, and thickness of organotypic cultures required the use of diffusion-weighted methods. Designed myelin-targeting liposomes allowed for semiquantitative detection by fluorescence, but the specificity for myelin was not consistent between assays due to the unspecific binding of liposomes. Conclusions: With respect to the sensitivity, imaging of brain tissue sections and organotypic cultures by MRI is feasible, and myelin-targeting nanosystems are a promising solution to quantify myelin ex vivo. With respect to specificity, fine tuning of the probe is required. Lipid-based systems may not be suitable for this goal, due to unspecific binding to tissues

    MiR-219a-5p Enriched Extracellular Vesicles Induce OPC Differentiation and EAE Improvement More Efficiently Than Liposomes and Polymeric Nanoparticles

    Get PDF
    Remyelination is a key aspect in multiple sclerosis pathology and a special effort is being made to promote it. However, there is still no available treatment to regenerate myelin and several strategies are being scrutinized. Myelination is naturally performed by oligodendrocytes and microRNAs have been postulated as a promising tool to induce oligodendrocyte precursor cell differentiation and therefore remyelination. Herein, DSPC liposomes and PLGA nanoparticles were studied for miR-219a-5p encapsulation, release and remyelination promotion. In parallel, they were compared with biologically engineered extracellular vesicles overexpressing miR-219a-5p. Interestingly, extracellular vesicles showed the highest oligodendrocyte precursor cell differentiation levels and were more effective than liposomes and polymeric nanoparticles crossing the blood–brain barrier. Finally, extracellular vesicles were able to improve EAE animal model clinical evolution. Our results indicate that the use of extracellular vesicles as miR-219a-5p delivery system can be a feasible and promising strategy to induce remyelination in multiple sclerosis patients.This work was supported by Carlos III Institute, (PI17/00189 and DTS15/00069), by Fondo Europeo de Desarrollo Regional—FEDER, by the Gipuzkoa Regional Council (DFG 15/006), by grant from the Basque Government (RIS3/DTS/2018222025), by the Department of Industry of the Basque Country (ELKARTEK 16/014), and the Spanish State Research Agency (SAF2017-87670-R) and Maria de Maeztu Units of Excellence Program Grant MDM-2017-0720). I.O.-Q., A.A. and L.I. were supported by the Department of Education of the Basque Government. IOQ and LAN were supported by EMBO short Term Fellowship Programme. LAN was supported by a Canadian graduate scholarship from the Canadian Institutes of Health Research (CGS-D CIHR).PRC was supported by Ikerbasque, the Basque Foundation for Science
    corecore