23,965 research outputs found

    D Mesons in Nuclear Matter: A DN Coupled-Channel Equations Approach

    Get PDF
    A set of coupled two-body scattering equations is solved for the DN system embedded in an iso-symmetric nuclear matter. The in-medium behavior of charmed D mesons: (D^+,D^0), is investigated from the self-consistent solution within this scheme. The effective meson-baryon Lagrangian in charm quantum number one sector, the key ingredient in the present study, is adopted from a recent model by Hofmann and Lutz which has aimed at combining the charmed meson degree of freedom in a consistent manner with chiral unitary models. After a critical examination, the original model is modified in several important aspects, such as the method of regularization, in order to be more consistent and practical for our objective. The resultant interaction is used to reproduce the position and width of the s-wave \Lambda_c(2593) resonance in the isospin zero DN channel. In the isospin one channel, it generates a rather wide resonance at \~2770 MeV. The corresponding in-medium solution is then sought by incorporating Pauli blocking and the D- and \pi-meson dressing self-consistently. At normal nuclear matter density, the resultant \Lambda_c (2593) is found to stay narrow and shifted at a lower energy, while the I=1 resonance is lowered in position as well and broadened considerably. The possible implication of our findings on the J/\Psi suppression, etc. in relativistic heavy ion collisions is briefly discussed.Comment: 30 pages, 8 eps figures, some typos and coefficients corrected, published in Phys. Rev.

    Detection of Leishmania infantum by PCR, serology and cellular immune response in a cohort study of Brazilian dogs

    Get PDF
    The sensitivity and specificity of PCR, serology (ELISA) and lymphoproliferative response to Leishmania antigen for the detection of Leishmania infantum infection were evaluated in a cohort of 126 dogs exposed to natural infection in Brazil. For PCR, Leishmania DNA from bone-marrow was amplified with both minicircle and ribosomal primers. The infection status and time of infection of each dog were estimated from longitudinal data. The sensitivity of PCR in parasite-positive samples was 98%. However, the overall sensitivity of PCR in post-infection samples, from dogs with confirmed infection, was only 68%. The sensitivity of PCR varied during the course of infection, being highest (78–88%) 0–135 days post-infection and declining to around 50% after 300 days. The sensitivity of PCR also varied between dogs, and was highest in sick dogs. The sensitivity of serology was similar in parasite-positive (84%), PCR-positive (86%) and post-infection (88%) samples. The sensitivity of serology varied during the course of infection, being lowest at the time of infection and high (93–100%) thereafter. Problems in determining the specificity of serology are discussed. The sensitivity and specificity of cellular responsiveness were low. These data suggest that PCR is most useful in detecting active or symptomatic infection, and that serology can be a more sensitive technique for the detection of all infected dogs

    Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets

    Full text link
    Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observed in Lu2BiFe4GaO12 and enhancement 700 % greater than that in a YIG film and at very low magnetic fields around 10-1 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping with potential applications for spintronic devices.Comment: 17 pages, 4 figure

    A study of the effect of conventional drilling and helical milling in surface quality in titanium Ti-6Al-4V and Ti-6AL-7Nb alloys for medical applications

    Get PDF
    In the manufacturing of a medical device, may occur the need to make a hole with a specific function. Among current methods, conventional drilling (CD) referred in this work as drilling (D) and helical milling (HM) are two options with different potential. When making the hole, it is important to choose the most suitable method to obtain the desired geometry and ensure the functionality of the device. This work aims to analyze surface parameters as, arithmetic average height (R a ), the maximum height of the profile (R t ), the average peak to valley height (R z DIN), chip formation and the geometric deviation of holes obtained by the previously referred manufacturing processes. The specimens, with cylindrical geometry, were made of titanium alloys, Ti- 6Al-4V and Ti-6Al-7Nb, currently used in the manufacture of medical devices. For this purpose, holes were made in a machining centre with different feed rate (F) for both methods and in the value of vertical step (a p ) in HM. The results obtained demonstrate that, at lower F and a p , HM presents better results. The Ti-6Al-7Nb alloy presents better roughness results compared to Ti-6Al-4V, validating it as a material able to be used in medical devices according to the fact that, a lower roughness is associated with higher corrosion resistance and fewer fatigue problems derived from it in components. By the work carried out, can be concluded that the roughness values obtained in HM are lower to those obtained by D making HM as a better option in hole making.publishe

    On the solution of a supersymmetric model of correlated electrons

    Get PDF
    We consider the exact solution of a model of correlated electrons based on the superalgebra Osp(22)Osp(2|2). The corresponding Bethe ansatz equations have an interesting form. We derive an expression for the ground state energy at half filling. We also present the eigenvalue of the transfer matrix commuting with the Hamiltonian.Comment: Palin latex , 8 page

    Towards a fully self-consistent spectral function of the nucleon in nuclear matter

    Get PDF
    We present a calculation of nuclear matter which goes beyond the usual quasi-particle approximation in that it includes part of the off-shell dependence of the self-energy in the self-consistent solution of the single-particle spectrum. The spectral function is separated in contributions for energies above and below the chemical potential. For holes we approximate the spectral function for energies below the chemical potential by a δ\delta-function at the quasi-particle peak and retain the standard form for energies above the chemical potential. For particles a similar procedure is followed. The approximated spectral function is consistently used at all levels of the calculation. Results for a model calculation are presented, the main conclusion is that although several observables are affected by the inclusion of the continuum contributions the physical consistency of the model does not improve with the improved self-consistency of the solution method. This in contrast to expectations based on the crucial role of self-consistency in the proofs of conservation laws.Comment: 26 pages Revtex with 4 figures, submitted to Phys. Rev.

    Boas Práticas Agropecuárias na ordenha de cabras leiteiras.

    Get PDF
    bitstream/CNPC-2010/22767/1/ct39.pd

    Testing M2T/T2M Transformations

    Get PDF
    Presentado en: 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013). Del 29 de septiembre al 4 de octubre. Miami, EEUU.Testing model-to-model (M2M) transformations is becoming a prominent topic in the current Model-driven Engineering landscape. Current approaches for transformation testing, however, assume having explicit model representations for the input domain and for the output domain of the transformation. This excludes other important transformation kinds, such as model-to-text (M2T) and text-to-model (T2M) transformations, from being properly tested since adequate model representations are missing either for the input domain or for the output domain. The contribution of this paper to overcome this gap is extending Tracts, a M2M transformation testing approach, for M2T/T2M transformation testing. The main mechanism we employ for reusing Tracts is to represent text within a generic metamodel. By this, we transform the M2T/T2M transformation specification problems into equivalent M2M transformation specification problems. We demonstrate the applicability of the approach by two examples and present how the approach is implemented for the Eclipse Modeling Framework (EMF). Finally, we apply the approach to evaluate code generation capabilities of several existing UML tools.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto TIN2011-2379

    Correlation length of the 1D Hubbard Model at half-filling : equal-time one-particle Green's function

    Full text link
    The asymptotics of the equal-time one-particle Green's function for the half-filled one-dimensional Hubbard model is studied at finite temperature. We calculate its correlation length by evaluating the largest and the second largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to allow for the genuinely fermionic nature of the one-particle Green's function, we employ the fermionic formulation of the QTM based on the fermionic R-operator of the Hubbard model. The purely imaginary value of the second largest eigenvalue reflects the k_F (= pi/2) oscillations of the one-particle Green's function at half-filling. By solving numerically the Bethe Ansatz equations with Trotter numbers up to N=10240, we obtain accurate data for the correlation length at finite temperatures down into the very low temperature region. The correlation length remains finite even at T=0 due to the existence of the charge gap. Our numerical data confirm Stafford and Millis' conjecture regarding an analytic expression for the correlation length at T=0.Comment: 7 pages, 6 figure
    corecore