
Testing M2T/T2M Transformations

Manuel Wimmer1 and Loli Burgueño2

1 Business Informatics Group, Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

2 GISUM/Atenea Research Group, Universidad de Málaga, Spain
loli@lcc.uma.es

Abstract. Testing model-to-model (M2M) transformations is becoming a promi-
nent topic in the current Model-driven Engineering landscape. Current approaches
for transformation testing, however, assume having explicit model representa-
tions for the input domain and for the output domain of the transformation. This
excludes other important transformation kinds, such as model-to-text (M2T) and
text-to-model (T2M) transformations, from being properly tested since adequate
model representations are missing either for the input domain or for the output do-
main. The contribution of this paper to overcome this gap is extending Tracts [12],
a M2M transformation testing approach, for M2T/T2M transformation testing.
The main mechanism we employ for reusing Tracts is to represent text within
a generic metamodel. By this, we transform the M2T/T2M transformation spec-
ification problems into equivalent M2M transformation specification problems.
We demonstrate the applicability of the approach by two examples and present
how the approach is implemented for the Eclipse Modeling Framework (EMF).
Finally, we apply the approach to evaluate code generation capabilities of several
existing UML tools.

1 Introduction

Much effort has been put into the establishment of model-to-model (M2M) transfor-
mation testing techniques in the past years [1,26]. Several approaches have been de-
veloped for defining contracts for M2M transformations that act as specifications for
model transformation implementations [5,12], as oracle functions to validate the output
of transformations [12,13], and as drivers for generating test cases [13]. In particular,
constraints for input models, output models and for the relationship between both may
be specified.

Besides M2M transformations, model-to-text (M2T) and text-to-model (T2M) trans-
formations are of major importance in Model-driven Engineering [7]. M2T transforma-
tions are typically used to bridge the gap between modeling languages and program-
ming languages by defining code generations but may be employed in a generic man-
ner to produce text from models such as documentation or textual representations of a
model’s content. T2M transformations are typically used for reverse engineering [4],
e.g., transforming legacy applications to models in the case of model-driven software
modernization. However, these kinds of transformations have not gained much attention
when it comes to testing.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62898106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper we adopt current techniques for testing M2M transformations to the
problem of testing T2M and M2T transformations. The prerequisite of using existing
M2M transformation techniques is to have metamodels for the input and output of the
transformations. However, for the side that is dealing with ”just” text, no metamodels
are usually available. Even more problematic, when considering T2M and M2T trans-
formations, a set of metamodels and T2M parsers may be required as a prerequisite. For
instance, consider Web applications where in addition to a general purpose program-
ming language several other languages may be employed where some of the languages
are even embeddable in other languages. Thus, developing metamodels and T2M parser
support for such complex settings may introduce a huge overhead.

To alleviate the burden from T2M and M2T transformation developers, we intro-
duce a generic approach that may be used for any transformation task where text is
involved as input or output of the transformations. The main mechanism we employ
is to represent text within a generic metamodel in order to transform M2T and T2M
transformation specification problems into equivalent M2M transformation specifica-
tion problems. The proposal is combinable with any contract-based M2M transforma-
tion approach, but in this paper we demonstrate its application with Tracts [12].

The structure of the paper is as follows. The next section introduces Tracts, a M2M
transformation testing approach, by example. Section 3 shows how to represent text-
based artifacts as models to allow for reusing the M2M transformation testing ap-
proaches. Section 4 demonstrates how Tracts are defined for M2T and T2M transforma-
tions and gives details about the implementation of the approach. Section 5 presents an
evaluation of the approach, in particular to explore its capabilities to find shortcomings
in code generations delivered by current UML tools. In Section 6 we present related
work and in Section 7 we conclude the paper with an outlook on future work.

2 Tracts for Testing Model-to-Model Transformations

Let us shortly introduce the formalism used in this paper, namely Tracts, for specify-
ing M2M transformation contracts. As we shall see, these formalism assumes to have
metamodels for the input and for the output of the transformation as all other existing
contract specification approaches do.

Tracts were introduced in [12] as a specification and black-box testing mechanism
for model transformations. They provide modular pieces of specification, each one fo-
cusing on a particular transformation scenario. Thus every model transformation can be
specified by means of a set of tracts, each one covering a particular use case—which is
defined in terms of particular input and output models and how they should be related
by the transformation. In this way, tracts allow partitioning the full input space of the
transformation into smaller, more focused behavioural units, and to define specific tests
for them. Basically, what we do with the tracts is to identify the scenarios of interest
to the user of the transformation (each one defined by a tract) and check whether the
transformation behaves as expected in these scenarios. Another characteristic of Tracts
is that we do not require complete proofs, just to check that the transformation works
for the tract test suites, hence providing a light-weight form of verification.

Fig. 1: Building blocks of a tract.

In a nutshell, a tract defines a set of constraints on the source and target metamod-
els, a set of source-target constraints, and a tract test suite, i.e., a collection of source
models satisfying the source constraints. The constraints serve as “contracts” (in the
sense of contract-based design [19]) for the transformation in some particular scenar-
ios, and are expressed by means of OCL invariants. They provide the specification of
the transformation.

In Figure 1 more details about the tracts approach are presented. The necessary
components the approach rely on are the source and target metamodels, the transfor-
mation T under test and the transformation contract, which consists of a tract test suite
and a set of tract constraints. In total, five different kinds of constraints are present:
the source and target metamodels are restricted by general constraints added to the lan-
guage definition, and the tract imposes additional source, target, and source-target tract
constraints for a given transformation.

If we assume a source model M being an element of the test suite and satisfying the
source metamodel and the source tract constraints given, the tract essentially requires
that the result T(M) of applying transformation T satisfies the target metamodel and
the target tract constraints and the tuple <M, T(M)> satisfies the source-target tract
constraints.

For demonstrating how to use Tracts, we introduce the simple transformation ex-
ample Families2Persons.3 The source and target metamodels of this transformation are
shown in Figure 2. For this example, a set of tracts is developed to consider only those
families with exactly four members (mother, father, daughter, son):

-- C1: SRC_oneDaughterOneSon
Family .allInstances−>forAll (f |f .daughters−>size=1 and f .sons−>size=1)
-- C2: SRC_TRG_Mother2Female
Family .allInstances−>forAll (fam |Female .allInstances−>exists (f |

fam .mother .firstName .concat (’ ’) .concat (fam .lastName) =f .fullName))
-- C3: SRC_TRG_Daughter2Female
Family .allInstances−>forAll (fam |Female .allInstances−>exists (f |

fam .daughters−>exists (d |d .firstName .concat (’ ’) .concat (fam .lastName)
=f .fullName)))

3 The complete example is available at our project website http://atenea.lcc.uma.es/
index.php/Main_Page/Resources/Tracts

Fig. 2: The Family and Person metamodels.

-- C4: SRC_TRG_MemberSize_EQ_PersonSize
Member .allInstances−>size=Person .allInstances−>size
-- C5: TRG_PersonHasName
Person .allInstances−>forAll (p |p .fullName<>’’ and

not p .fullName .oclIsUndefined ())

Concerning the kinds of the shown Tracts, C1 represents a pre-condition for the
transformation, C2 − C4 define constraints on the relationships between the source
and target models, i.e., constraints that should be ensured by the transformation, and
finally, C5 represents a post-condition for the transformation. Note that this approach
is independent from the model transformation language and platform finally used to
implement and execute the transformation.

3 A Generic Metamodel for Text

In order to reuse M2M transformation specification and testing approaches, we have to
transform the M2T or T2M transformation specification problem into a M2M transfor-
mation specification problem. For this, the text artifacts residing in the input or output
domain of the transformations under study have to be injected to the model engineering
technical space [16].

For realizing this goal, there are several options. We may either decide to go for a
specific format conforming to a specific grammar or to use a generic format that is able
to represent any text-based artefact. In case there is already a metamodel available for
the specific grammar, then this metamodel may be a good choice anyway. However,
for most transformation scenarios involving text at one side there are no metamod-
els available, because metamodels are often not required at all. Just consider the case
of generating documentation from models. Although there is no generalized and fixed
structure, it may be necessary to check certain requirements of the transformation. This
is why we have decided to use the second option, which allows us to save upfront the
effort required when developing M2T or T2M transformations in general. Furthermore,
using a generic metamodel to represent the text artifacts also reflects best practices in
the development of M2T transformations, where no metamodel is used for the text arti-
facts. For example, consider template-based M2T transformation languages4. Usually,

4 http://www.omg.org/spec/MOFM2T/

Fig. 3: Metamodel for representing text artifacts and repositories.

template-based approaches are used to generate that text. Finally, even if there is a T2M
parser, this is again a transformation that may have to be specified and tested. Thus, our
generic approach may be used to test the specific approach.

Apart from this, there is a second aspect that needs to be considered when dealing
with text-based artifacts. The artifacts are normally organized in a hierarchical folder
structure, which should be taken into account. For instance, the output of a M2T trans-
formation may not be just a single file but several, which should also be arranged in
a certain folder structure. Thus, our approach has to cover concepts for describing the
structure of a repository that contains the input or output artifacts of a transformation.

Figure 3 shows the metamodel for representing text artifacts stored in repositories
using a certain structure. Meta-class Repository represents the entry point to the root
folder containing folders and files or to a file if only one single artefact is used. While
folders just contain a name, files have in addition an extension as well as a content. The
content of files is represented by lines that are sequentially ordered. A derived attribute
content is used to allow easy access to the complete content of a file.

Figures 4 and 5 present an instance of the text metamodel coming from a Java
code repository. On the left hand side of the figures the Java folder structure as well
as the content of a Java file are shown, while on the right hand side an excerpt of the
corresponding text model (shown in the EMF tree browser) is illustrated.

4 M2T/T2M Transformation Testing By-Example

This section shows how the metamodel for describing text artifacts can be used in con-
junction with tracts for M2T and T2M transformation testing.

4.1 M2T Example: UML to Java

For illustration purposes, let’s apply our approach to a given case: the transformation
that converts UML class models into the corresponding Java classes—which are text

Fig. 4: Exemplary folder structure and corresponding text model.

Fig. 5: Exemplary file content and corresponding text model.

files that should be stored in folders inside a code repository. Figure 6 shows the subset
of the UML metamodel that we will consider in this scenario. The target metamodel
is the one that we described above for speficying text artifacts, and that was shown in
Figure 3.

The specification of such a transformation is composed of a set of tracts, each one
focusing on a particular property that we want to ensure. As illustrative examples we
have chosen 10 tracts, which are described below. Notice that in some of them we have
used auxiliary operations such as toFirstUpper and toString to clarify the code. How
these auxiliary operations are defined as an user-defined library in OCL is explained in
Subsection 4.3.

The first tract states that nested UML packages should be transformed into nested
folders. This is specified by the following constraint:

-- C1: Nested packages are transformed into nested folders
Package .allInstances () −> forAll (p | Folder .allInstances ()−>

exists (f | f .name = p .name and p .subPackages−>
forAll (subp | f .folders ()−>exists (subf | subf .name = subp .name))))

Fig. 6: A simplified metamodel for UML class diagrams.

The second tract states that Java packages should be imported when associations
occur between elements contained in different UML packages.

-- C2: Import of packages when associations are crossing package borders
Association .allInstances −> select (a |
a .roles−>at (1) .target .package <> a .roles−>at (2) .target .package)
−> forAll (a | File .allInstances−>exists (f |

f .name = a .roles−>at (1) .target .name and f .extension = ’java’ and
f .content () .matchesRE (’import.*’+ a .roles−>at (2) .target .name))))

We should also ask for a precondition in order not to allow that any class inherits
from a leaf class.

-- C3: No leaf class as superclass
Class .allInstances () −> forAll (c | c .isLeaf i m p l i e s c .subClasses−>isEmpty ())

Another precondition should check that there is no multiple inheritance in use in the
UML model (multiple inheritance is not allowed in Java).

-- C4: Only one superclass allowed in Java
Class .allInstances ()−>forAll (c | c .superClasses−>size () <=1)

We also include here some tracts to specify how particular elements in the UML
model should be transformed. For example, derived attributes can not be modified in
Java, and therefore only getter methods are generated for them.

-- C5: Derived attributes only have a getter method
Class .allInstances−>forAll (c | File .allInstances
−>exists (f | f .name = c .name and f .extension = ’java’ and

c .attributes−>select (a | a .isDerived)−>forAll (a |
not f .content () .matchesRE (a .type+’.*?’+a .name+’.*?;’) and
f .content () .matchesRE (a .type+’\\s+get’+ toFirstUpper (a .name)))))

Similarly to the tract above, the following tract specifies how the visibility of at-
tributes should be handled by the transformation.

-- C6: Visibility of attributes is considered
Package .allInstances−>forAll (p |

p .classes−>forAll (c | File .allInstances−>exists (f |
f .name = c .name and f .extension = ’java’ and
f .container .name = p .name and
c .attributes−>forAll (a |

f .content () .matchesRE (toString (a .visibility)
+’.*?’+a .type+’.*?’+a .name+’.*?;’)))))

And the same for association ends:
-- C7: Visibility of roles is considered
Association .allInstances−>forAll (a | File .allInstances−>exists (f |
f .name = a .roles−>at (1) .target .name and f .extension = ’java’ and
f .content () .matchesRE (toString (a .roles−>at (2) .visibility) +

’.*?’+a .roles−>at (2) .target .name+’.*?’+a .roles−>at (2) .name+’.*?’))))

Finally, three further constraints specify that there are no Java keywords in the UML
models, that the names of the elements and folders are well formed (e.g., no control
characters), and that generic UML classes are supported.

-- C8: No keywords as name in UML model
NamedElement .allInstances ()−>forAll (ne | not Set{’abstract’ ,

’extends’ ,’implements’ ,’class’ ,’public’ ,’private’ ,’protected’ , . . . }
.includes (ne .name))

-- C9: Well-formed names
NamedElement .allInstances ()−>forAll (ne |

ne .name .matchesRE (’[a-zA-Z_][a-zA-Z0-9_]*’))
-- C10: Generic classes are supported
TemplateClass .allInstances−>forAll (c | File .allInstances−>exists (f |

f .name=c .name and f .extension=’java’ and
f .content () .matchesRE (’class\\s+’+c .name+’\\s+<.*?>.*?{’))))

Of course, further constraints can be defined to deal with other requirements on the
transformation. We have included here the tracts above in order to show examples of
the expressiveness of our approach in the case of an M2T transformation. We do not try
to claim completeness of full coverage of our specifications for the UML to Java case.

4.2 T2M example: USE to UML

To illustrate the applicability and usage of our proposal in the case of T2M transforma-
tions, we have focused on a transformation between textual USE [11] specifications of
structural models, and its corresponding UML specifications. USE features for repre-
senting models are similar to the ones defined in UML: classes, attributes, associations
and operations. For example, the following USE code corresponds to a simple model of
persons owning cars.

class Person
attributes

name : S t r i n g
birthDate : I n t e g e r

operations
age () : I n t e g e r

end
abstract class Vehicle

attributes
brand : S t r i n g

end

class Car < Vehicle
attributes

licenceNumber : S t r i n g
end
association Person_Car between

Person [0 . . 1] role owns
Car [∗] role owner

end

The following set of constraints are examples to show how different requirements
on the transformation from USE to UML can be stated.

The first constraint specifies that the USE model should reside in only one file.
-- D1: Only one file per transformation run allowed

File .allInstances ()−>size () = 1

The second constraint states that every USE class will correspond to one UML class
with the same name.

-- D2: Every USE class should result in UML class
Line .allInstances ()−>select (l | l .text .matchesRE (’ˆ\\s*class’))−>

forAll (l |Class .allInstances−>exists (c |l .text .matchesRE (c .name)))

The third one specifies how USE inheritance relationships (cf. ’<’ symbol in the
USE example) are transformed into UML inheritance relationships.

-- D3: less-than sign has to open an inheritance relationship
Line .allInstances ()−>select (l | l .text .matchesRE (’\\s*class.*<’))−>
forAll (l |Class .allInstances−>exists (c | l .text .matchesRE (c .name) and
c .superClasses−>exists (superClass |l .text .matchesRE (superClass .name))))

Similarly, the last three constraints allow to specify that USE abstract classes are
transformed into UML abstract classes, USE attributes into UML attributes, and USE
associations into UML associations.

-- D4: USE abstract classes to UML abstract classes
Line .allInstances ()−>select (l |l .text .matchesRE (’abstract\\s+class’))−>

forAll (l |Class .allInstances−>
exists (c |l .text .matchesRE (c .name) and c .isAbstract))

-- D5: USE attributes to UML attributes
Class .allInstances ()−>forAll (c |c .attributes−>

forAll (a |File .allInstances−>asSequence ()−>first () .content () .
matchesRE (’class\\s*’+c .name+’\\s*(<\\s*[A-Za-z0-9]+)?\\s*attributes.*?’
+a .name+’\\s*:\\s*’+a .type+’.*?(end|operations)’)))

-- D6: USE associations to UML associations
Association .allInstances−>forAll (a |
File .allInstances−>asSequence ()−>first () .content () .matchesRE (

a .roles−>iterate (r ; s : S t r i n g =
’(association|composition)\\s+[A-Za-z0-9_]+\\s+between.*?’ |
s .concat (r .target .name+’.*?role ’+r .name+’.*?’))))

4.3 Tool Support

In order to provide tool support for our proposal, we have developed a injector (parser)
that converts the content of a repository, i.e., files, folders, and their structure, into a
model that conforms the Text metamodel shown in Figure 3, and an extractor that takes
models conforming to the Text metamodel and produces text organized in folders.

In order to check that a given M2T transformation fulfils a set of constraints (such as
the ones shown in Section 4.1), we run the transformation with the set of models defined
by the tract test suite (these input models have not been shown before for the sake of

simplicity) and then use the injector with the output text (organized in folders) resulting
from the transformation to generate the corresponding output models conforming to
the Text metamodel. Then we are in a position to check the validity of the constraints
as in the case of tracts defined for M2M transformations, with our TractsTool [26].
The TractsTool evaluates the defined constraints on the source and target models by a
transparent translation to the USE tool [11].

The case of testing T2M transformations is similar. Here the test suite is defined
by the tract as a set of repositories, which need to be transformed first into a model-
based representation by our injector component to check the source constraints. When
the source constraints are fulfilled, the content of the repository is transformed by the
T2M transformation under test to produce the output models. The models produced
from the repository and their corresponding output models can then be validated by the
TractsTool against the tracts.

For easing the formulation of the OCL constraints, we have also enriched USE with
a set of libraries and operations to deal with Strings. For instance, to deal with regular
expressions in OCL we have introduced the matchesRE() operation shown above that
checks whether a given sequence matches a regular expression or not. Furthermore,
we have also introduced some auxiliary functions that are currently provided by M2T
transformation languages such as toFirstUpper() to end up with more concise OCL con-
straints than just using the standard OCL String operation library.

The TractsTool for testing M2T/T2M transformations is available at our project
website5 with several examples.

5 Evaluation

Most UML tools provide code generation facilities to produce source code from UML
models. In order to evaluate the usefulness of using contract-based specifications of
code generators, we tested a selected set of currently available UML tools by checking
a set of tracts.

5.1 Selected Tracts and Test Models

For the evaluation, we used the constraints defined by the tracts presented in Section 4.1,
which represent some of the most essential requirements that any UML to Java code
generator has to fulfil. These constraints are described below, together with their type
(‘Scr’ for source constaints, ‘Trg’ for target constaints and ‘ScrTrg’ for source-target
constaints), as well as one example of the test suite models that were used to check the
tracts.

C1 SrcTrg: Nested packages are transformed into nested folders. Minimal test model:
two nested packages in a UML model.

C2 SrcTrg: Import of packages supported. Minimal test model: two packages, each one
having one class, both connected by an association.

5 http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

C3 Src: Inheritance of a leaf class is not allowed. Minimal test model: a class inheriting
from a leaf class.

C4 Src: Only single inheritance is used in UML. Minimal test model: one class having
two superclasses.

C5 SrcTrg: Derived attributes only result in getter method. Minimal test model: one
class having one derived attribute.

C6 SrcTrg: Visibility of attributes mapped to Java. Minimal test model: one class hav-
ing one public, one private, one package, and one protected attribute.

C7 SrcTrg: Visibility of roles mapped to Java. Minimal test model: two classes related
by three associations, whose association ends have different visibilities (public,
private, package, and protected).

C8 Src: No Java keywords are allowed as names in UML models. Minimal test model:
one class with name “class”, one attribute with name “public”, and one operation
with name “implements”.

C9 Src: Names in UML model have to be valid Java identifiers. Minimal test model:
one class with name “-”, attribute with name “+”, and operation with name “?”.

C10 SrcTrg: Generic classes mapped to Java. Minimal test model: one generic class with
two parameters.

5.2 Selected Tools

We selected six UML tools from industry that claimed to support code generation from
UML class diagrams into Java code. The selected sample covers both commercial tools
and open-source projects.

– ArgoUML (http://argouml.tigris.org) is a modeling tool supporting
UML 1.4 diagrams. It is an open source project and distributed under the Eclipse
Public License (EPL). Currently there is only one edition of ArgoUML available.
We evaluated version 0.34.

– Poseidon for UML (http://www.gentleware.com) is a modeling tool sup-
porting UML 2.0, distributed by Gentleware. We evaluated the community edition
of Poseidon for UML, version 6.0.2.

– MagicDraw (http://www.nomagic.com) is a commercial modeling tool sup-
porting UML 2.0 and is distributed by NoMagic. We evaluated the enterprise edi-
tion, version 16.8.

– EnterpriseArchitect (http://www.sparxsystems.com) is a commercial mod-
eling tool supporting UML 2.4.1 and is distributed by SparxSystems. We evaluated
the professional edition, version 10.

– BOUML (http://www.bouml.fr/) is a UML 2.0 diagram designer which
also allows for code generation. We evaluated version 4.22.2.

– Altova UModel (http://www.altova.com/umodel.html) is a UML 2.0
tool for software modeling. We evaluated Altova UModel 2013, the latest version
available.

Table 1: Evaluation results
TOOL C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

ArgoUML X X × × - X X × × X
Poseidon X × × X × X X × X -

MagicDraw X X X X × X X × X X
EnterpriseArchitect X X X × × X X × × X

BOUML × X - X × X X × X X
Altova UModel × X X X × X X X X X

5.3 Evaluation procedure

We defined reference test models based on UML metamodel shown in Figure 6. Sub-
sequently, we re-modelled the reference test models in all of the selected tools. Having
the models within the specific tools allowed us to run the validation support and code
generators of the specific tools. The validation support is related to the evaluation of
support for the Src constraints that should act as filter for the code generator, i.e., only
valid models should be transformed to code. Thus, we validated all test models in case
validation support is available in a specific tool and checked if validation errors or at
least warnings are reported for the negative test models associated to the Src constraints.
For checking Trg and SrcTrg constraints, we translated the output of the code generators
to Text models and evaluated the resulting output in combination with the input models,
i.e., the reference models, using the testing approach described in this paper.

It has to be mentioned that the UML tools are delivered with standard configurations
for the code generators. Some tools also allow to tweak the code generation capabilities
by configuring certain options using specific wizards before running the code genera-
tion. Others also allow to edit the code generation scripts, enabling further possibilities
to customize the code generation facilities beyond the possibilities offered by the wiz-
ards. In this sense, we evaluated first the standard code generation features the tools
offer, and after that we tried to tweak the tools by using the wizards to fulfill additional
constraints that were not fulfilled in the standard configuration. However, the customiza-
tion possibilities based on the wizards could not enhance further the evaluation results
for the given constraints.

5.4 Results

Table 1 shows the results of the evaluation. In the table, a tick symbol (X) means that
the test passed for that tract and a cross symbol (×) means that the tract test failed.
Some of the tests were not available for a given tool, e.g., a particular modeling feature
is missing, and were not performed. This is indicated by a dash (-).

In the first place, constraint C1 did not hold for some tools. In the case of BOUML
and Altova UModel, the code generation requires that UML elements are manually
associated to certain artifacts for which a path must be specified. Thus, the user has to

specify the folders and Java files that should be generated. All other tools work well
with packages in an automated way.

Concerning associations that cross package borders (C2), Poseidon is the only tool
that does not take this feature into account.

Precondition C3 checks that no class inherits by another class marked as leaf.
BOUML does not include the option to set a class as leaf. Poseidon fails because it
lets that a class inherits from a leaf class. ArgoUML passes the test and give a warn-
ing during the model validation only when the superclass is marked as leaf before the
creation of the generalization relationship.

C4 checks that the UML model does not use multiple inheritance, because it cannot
be used in Java. ArgoUML and EnterpriseArchitect fail because they do not check this
constraint, and they both create a Java class which does not even compile.

Concerning C5, ArgoUML does not allow to define derived features. The rest of the
tools do, but derived features are ignored in the code generation process. An expected
solution would create derived attributes into their corresponding getter methods.

All tools work well with the transformation of the visibility of attributes and roles
(constraints C6 and C7).

Most tools fail with constraints C8 and C9 (use of Java keywords and invalid names
in Java). Tools do not seem to conduct any validation check before the code genera-
tion starts. Although many tools allow several kinds of validation checks on the UML
models, most of these tests only deal with UML constraints. A few tools also allow
the development of user-defined validation checks, but they do not seem to have been
defined for the code generation facilities they support. The only exception is Altova
UModel, which raises a warning if non-valid Java identifiers are used as names for
UML elements.

Finally, generic classes are supported and correct Java code is generated by all UML
tools (constraint C10) except Poseidon, which does not allow to define generic classes.

In summary, the results show that code generators have to fulfill several properties
that should be specified at a higher level for allowing their validation. In particular, we
found that no tool performs well even with respect to the basic UML to Java code gener-
ators. Furthermore, we discovered that several tools produced incorrect Java code, even
not compilable in some situations. In this sense, the tracts presenting the basic require-
ments could be used as the initial components of a benchmark for future improvements
and developments of UML-to-Java code generators.

6 Related Work

The need for systematic verification of model transformations has been documented
by the research community by several publications outlining the challenges to be tack-
led [2,3,8,23]. As a response, a plethora of approaches ranging from lightweight certi-
fication to full verification have been proposed to reason about different kinds of prop-
erties of M2M transformations [1,26]. However, as mentioned before, transformations
involving text on one side have not been extensively studied.

Several kinds of works apply contracts for M2M transformation testing using dif-
ferent notations for defining the contracts. In the following, we divide them into two

main categories. First, contracts may be defined on the model level by either giving
(i) complete examples of source and target model pairs, or (ii) giving only model frag-
ments which should be included in the produced target models for given source models.
Second, contracts may be defined on the metamodel level either by using (iii) graph
constraint languages or (iv) textual constraint languages such as OCL.

A straight-forward approach is to define the expected target model for a given source
model which acts as a reference model for analyzing the actual produced target model
of a transformation as proposed in [9,15,17,18]. Model comparison frameworks are
employed for computing a difference model between the expected and the actual target
models. If there are differences then it is assumed that there exists an error either in the
transformation or in the source/target model pair. Analogously, one could employ text
comparison frameworks to reason about an expected text artefact and an computed text
artefact. However, reasoning about the cause for the mismatch between the expected and
actual text artefact solely based on the difference model is challenging. Several elements
in the difference model may be effected by the same error, however, the transformation
engineer has the burden to cluster the differences by herself.

A special form of verification by contract was presented in [20]. The authors pro-
pose to use model fragments (introduced in [22]) which are expected to be included
in a target model which is produced from a specific source model. Using fragments
as contracts is different from using examples as contracts. Examples require an equiv-
alence relationship between the expected model and actual target model, while frag-
ments require an inclusion relationship between the expected fragments and the actual
target model. Using our text metamodel, one is able to define such fragments even for
M2T/T2M transformations, but they still only define the oracle for one particular input
model.

In previous work [13] we proposed a declarative language for the specification of vi-
sual contracts for defining pre- and post-conditions as well as invariants for model trans-
formations. For evaluating the contracts on test models, the specifications are translated
to QVT Relations which are executed in check-only mode. In particular, QVT Relations
are executed before the transformation under test is executed to check the preconditions
on the source models and afterwards to check relationships between the source and
target models as well as postconditions on the target models. This approach may be
used as an alternative syntax for our presented approach. Further alternative text-based
approaches for defining oracles are presented in [5,6,9,10,14], however, they do not
discuss how to apply their approaches for text artefacts.

The most closely related work is presented in Tiso et al. [25] where the problem of
testing model-to-code transformations is explicitly mentioned. The authors enumerate
two possibilities for such tests. First, they briefly mention a static approach which eval-
uates if certain properties are fulfilled by the transformation target code. However, they
do not describe the details of this possibility. Second, they discuss a dynamic approach
based on checking the execution of the transformation target, which is subsequently
elaborated in their paper. In particular, they model, in addition to the domain classes,
test classes that execute certain operations and check for given post-conditions after
the operations have been executed. While we propose a generic and static approach to
test M2T/T2M transformations in general, Tiso et al. propose an approach for testing

a specific model-to-code transformation, namely from UML class diagrams to specific
Java code and using JUnit tests that are also derived from a model representation. Fur-
thermore, in our approach we have the possibility to directly test M2T/T2M transfor-
mations. However, in Tiso et al. [25] the execution output of the generated application
has to be analyzed to trace eventual errors back to the M2T transformation.

Finally, an approach for testing code generators for executable languages is pre-
sented in [24]. The authors present a two-folded approach. On the one hand, first-order
test cases that represents the models which are transformed into code are distinguished.
On the other hand, second-order test cases are introduced representing tests that are
executed on models as well as on the derived implementation, i.e., on the generated
code. The output of the code execution is compared with the output of the model exe-
cution. If these outputs are equivalent, it is assumed that the code generators works as
expected. Compared our proposal, we provide an orthogonal approach for testing the
syntactic equivalence by checking certain constraints, i.e., how to define oracles for the
first-order test cases. Combining a syntactical with a semantical approach seems to be
an interesting subject for future work.

7 Conclusions and Future Work

This paper presented a language-agnostic approach for testing M2T/T2M transforma-
tions. Agnostic means independent from the languages used for the source and target
artifacts of the transformations, as well as to the transformation language used for im-
plementing the transformations. By extending OCL with additional String operations,
we have been able to specify contracts for practical examples and evaluated the cor-
rectness of current UML-to-Java code generators offered by well-known UML tools.
This evaluation showed a great potential for further improving code generators and
documents the real need for an engineering discipline to develop M2T/T2M transfor-
mations.

There are several lines of work that we would like to explore next. In the first place,
we plan to investigate how current Architecture Driven Modernization (ADM)6 mod-
eling standard such as Knowledge Discovery Metamodel (KDM) [21] may be used
for defining contracts that are programming language independent and reusable for a
family of code generators. For example, the presented contracts may be platform inde-
pendently expressed and reused for testing UML-to-C# code generators. Secondly, the
TractsTool we have used is a prototype whose limits need to be explored and improved.
The models defined in the Tracts’ test suites are normally of reasonable size (less than
one or two thousand elements) because this is usually enough for checking the Tract
constraints. However, we have discovered that large models (with several thousands of
model elements) are hard to manage with the tools that we currently use. In this sense,
looking for internal optimizations of the tool is something we also plan to explore next.
Finally, we are working on the development of a benchmark for UML-to-Java code
generators that could be useful to the community, based on a modular approach such as
Tracts and on the proposal presented in this paper.

6 http://adm.omg.org

Acknowledgements. This work is partially funded by Research Project TIN2011-
23795. We would like to sincerely thank the Bremen Database Systems Group led by
Prof. Martin Gogolla, in particular to Lars Hamann, for their excellent support and help
with their tool USE.

References

1. Amrani, M., Lúcio, L., Selim, G., Combemale, B., Dingel, J., Vangheluwe, H., Traon, Y.L.,
Cordy, J.R.: A Tridimensional Approach for Studying the Formal Verification of Model
Transformations. In: Proceedings of the 1st International Workshop on Verification and Val-
idation of Model Transformations (VOLT 2012) @ ICST. pp. 921–928. IEEE (2012)

2. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S., Fleurey,
F., Traon, Y.L.: Model transformation testing challenges. In: Proceedings of International
Workshop on Integration of Model Driven Development and Model Driven Testing (IMDD-
MDT 2006) @ ECMDA (2006)

3. Baudry, B., Ghosh, S., Fleurey, F., France, R., Traon, Y.L., Mottu, J.M.: Barriers to System-
atic Model Transformation Testing. Commun. ACM 53(6), 139–143 (2010)

4. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and extensible frame-
work for model driven reverse engineering. In: Proceedings of the 25th International Confer-
ence on Automated Software Engineering (ASE 2010). pp. 173–174. ACM (2010)

5. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification of model
transformations. ECEASST 24 (2009)

6. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of model trans-
formation contracts. In: Proceedings of the International Workshop on OCL and Model
Driven Engineering @ MODELS (2004)

7. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–646 (2006)

8. France, R.B., Rumpe, B.: Model-driven Development of Complex Software: A Research
Roadmap. In: Proceedings of the 29th International Conference on Software Engineering
(ISCE 2007) - Future of Software Engineering Track. pp. 37–54. IEEE Computer Society
(2007)

9. Garcı́a-Domı́nguez, A., Kolovos, D.S., Rose, L.M., Paige, R.F., Medina-Bulo, I.: EUnit: A
Unit Testing Framework for Model Management Tasks. In: Proceedings of the 14th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS 2011).
LNCS, vol. 6981, pp. 395–409. Springer (2011)

10. Giner, P., Pelechano, V.: Test-Driven Development of Model Transformations. In: Proceed-
ings of the 12th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2009). LNCS, vol. 5795, pp. 748–752. Springer (2009)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environment for
validating UML and OCL. Science of Computer Programming 69, 27–34 (2007)

12. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: Proceedings of
the 7th European Conference on Modelling Foundations and Applications (ECMFA 2011).
LNCS, vol. 6698, pp. 221–235. Springer (2011)

13. Guerra, E.: Specification-driven test generation for model transformations. In: Proceedings
of the 5th International Conference on Theory and Practice of Model Transformations (ICMT
2012. LNCS, vol. 7307, pp. 40–55. Springer (2012)

14. Kolovos, D., Paige, R., Rose, L., Polack, F.: Unit testing model management operations. In:
Workshop Proceedings of the IEEE International Conference on Software Testing Verifica-
tion and Validation (ICSTW 2008). pp. 97–104. IEEE Computer Society (2008)

15. Kolovos, D.S., Paige, R.F., Polack, F.A.: Model comparison: a foundation for model com-
position and model transformation testing. In: Proceedings of the International Workshop on
Global Integrated Model Management (GaMMa 2006) @ ICSE. pp. 13–20. ACM (2006)

16. Kurtev, I., Bézivin, J., Akşit, M.: Technological spaces: An initial appraisal. In: Proceedings
of the Confederated International Conferences (CoopIS, DOA, and ODBASE), Industrial
track (2002)

17. Lin, Y., Zhang, J., Gray, J.: Model comparison: A key challenge for transformation testing
and version control in model driven software development. In: Proceedings of the Workshop
on Best Practices for Model-Driven Software Development @ OOPSLA. pp. 219–236 (2004)

18. Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. In: Beydeda, S.,
Book, M., , Gruhn, V. (eds.) Model-Driven Software Development – Research and Practice
in Software Engineering. pp. 219–236. Springer (2005)

19. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)
20. Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: oracle issue. In: Work-

shop Proceedings of the IEEE International Conference on Software Testing Verification and
Validation (ICSTW 2008). pp. 105–112. IEEE Computer Society (2008)

21. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge Discovery Metamodel-
ISO/IEC 19506: A standard to modernize legacy systems. Computer Standards & Interfaces
33(6), 519–532 (2011)

22. Ramos, R., Barais, O., Jézéquel, J.M.: Matching Model-Snippets. In: Proceedings of the 10th
International Conference on Model Driven Engineering Languages and Systems (MODELS
2007). LNCS, vol. 4735, pp. 121–135. Springer (2007)

23. Straeten, R.V.D., Mens, T., Baelen, S.V.: Challenges in Model-Driven Software Engineering.
In: Models in Software Engineering. LNCS, vol. 5421, pp. 35–47. Springer (2008)

24. Stürmer, I., Conrad, M., Dörr, H., Pepper, P.: Systematic testing of model-based code gener-
ators. IEEE Trans. Software Eng. 33(9), 622–634 (2007)

25. Tiso, A., Reggio, G., Leotta, M.: Early Experiences on Model Transformation Testing. In:
Proceedings of the 1st Workshop on the Analysis of Model Transformations (AMT 2012) @
MODELS. pp. 15–20. ACM (2012)

26. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal Specifica-
tion and Testing of Model Transformations. In: Advanced Lectures of the 12th International
School on Formal Methods for the Design of Computer, Communication, and Software Sys-
tems - Formal Methods for Model-Driven Engineering (SFM 2012). LNCS, vol. 7320, pp.
399–437. Springer (2012)

