170 research outputs found
The use of direct geometry spectrometers in molecular spectroscopy
The advantages and disadvantages of the use of direct geometry spectrometers for molecular spectroscopy and catalysis studies are described. We show that both direct and indirect geometry INS spectrometers are important tools for the study of industrially relevant areas such as catalysis, proton conductors and gas separation. We propose a novel hybrid instrument, Cerberus, that would offer high sensitivity and high-to-reasonable resolution across the entire 'mid-infrared' spectral range that would effectively advance research in these areas
Inelastic neutron scattering study of binding of para-hydrogen in an ultra-microporous metal-organic framework
Metal-organic framework (MOF) materials show promise for H2 storage and it is widely predicted by computational modelling that MOFs incorporating ultra-micropores are optimal for H2 binding due to enhanced overlapping potentials. We report the investigation using inelastic neutron scattering of the interaction of H2 in an ultra-microporous MOF material showing low H2 uptake capacity. The study has revealed that adsorbed H2 at 5 K has a liquid recoil motion along the channel with very little interaction with the MOF host, consistent with the observed low uptake. The low H2 uptake is not due to incomplete activation or decomposition as the desolvated MOF shows CO2 uptake with a measured pore volume close to that of the single crystal pore volume. This study represents a unique example of surprisingly low H2 uptake within a MOF material, and complements the wide range of studies on systems showing higher uptake capacities and binding interactions
Alternative view of oxygen reduction on porous carbon electrocatalysts: the substance of complex oxygen-surface interactions
Electrochemical oxygen reduction reaction (ORR) is an important energy-related process requiring alternative catalysts to expensive platinum-based ones. Although recently some advancements in carbon catalysts have been reported, there is still a lack of understanding which surface features might enhance their efficiency for ORR. Through a detailed study of oxygen adsorption on carbon molecular sieves and using inelastic neutron scattering, we demonstrated here that the extent of oxygen adsorption/interactions with surface is an important parameter affecting ORR. It was found that both the strength of O2 physical adsorption in small pores and its specific interactions with surface ether functionalities in the proximity of pores positively influence the ORR efficiency. We have shown that ultramicropores and hydrophobic surface rich in ether-based groups and/or electrons enhance ORR on carbon electrocatalysts and the performance parameters are similar to those measured on Pt/C with the number of electron transfer equal to 4
Heterolytic Scission of Hydrogen Within a Crystalline Frustrated Lewis Pair
We report the heterolysis of molecular hydrogen under ambient conditions by the crystalline frustrated Lewis pair (FLP) 1-{2-[bis (pentafluorophenyOboryl] phenyl -2, 2,6,6-tetrame-thylpiperidine (KCAT). The gas-solid reaction provides an approach to prepare the solvent-free, polycrystalline ion pair KCATH2 through a single crystal to single crystal transformation. The crystal lattice of KCATH2 increases in size relative to the parent KCAT by approximately 2%. Microscopy was used to follow the transformation of the highly colored red/orange KCAT to the colorless KCATH2 over a period of 2 h at 300 K under a flow of H-2 gas. There is no evidence of crystal decrepitation during hydrogen uptake. Inelastic neutron scattering employed over a temperature range from 4-200 K did not provide evidence for the formation of polarized H-2 in a precursor complex within the crystal at low temperatures and high pressures. However, at 300 K, the INS spectrum of KCAT transformed to the INS spectrum of KCATH2. Calculations suggest that the driving force is more favorable in the solid state compared to the solution or gas phase, but the addition of H-2 into the KCAT crystal is unfavorable. Ab Initio methods were used to calculate the INS spectra of KCAT, KCATH2, and a possible precursor complex of H-2 in the pocket between the B and N of crystalline KCAT. Ex-situ NMR showed that the transformation from KCAT to KCATH2 is quantitative and our results suggest that the hydrogen heterolysis process occurs via H-2 diffusion into the FLP crystal with a rate-limiting movement of H-2 from inactive positions to reactive sites.Peer reviewe
Exceptional capture of methane at low pressure by an ironâbased metalâorganic framework
The selective capture of methane (CH4) at low concentrations and its separation from N2 are extremely challenging owing to the weak host-guest interactions between CH4 molecules and any sorbent material. Here, we report the exceptional adsorption of CH4 at low pressure and efficient separation of CH4/N2 by MFM-300(Fe). MFM-300(Fe) shows a very high uptake for CH4 of 0.85 mmol gâ1 at 1 mbar and 298 K and a record CH4/N2 selectivity of 45 for porous solids, representing a new benchmark for CH4 capture and CH4/N2 separation. The excellent separation of CH4/N2 by MFM-300(Fe) has been confirmed by dynamic breakthrough experiments. In situ neutron powder diffraction, and solid-state nuclear magnetic resonance and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modelling, reveal a unique and strong binding of CH4 molecules involving Fe-OH···CH4 and C···phenyl ring interactions within the pores of MFM-300(Fe), thus promoting the exceptional adsorption of CH4 at low pressure
Neutron scattering studies of heterogeneous catalysis
Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structureâcatalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutronânucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis
- âŠ