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Abstract. The advantages and disadvantages of the use of direct geometry spectrometers for 
molecular spectroscopy and catalysis studies are described. We show that both direct and 
indirect geometry INS spectrometers are important tools for the study of industrially relevant 
areas such as catalysis, proton conductors and gas separation. We propose a novel hybrid 
instrument, Cerberus, that would offer high sensitivity and high-to-reasonable resolution across 
the entire ‘mid-infrared’ spectral range that would effectively advance research in these areas. 

1.  Inelastic neutron scattering spectroscopy 
Inelastic neutron scattering (INS) spectroscopy [1] is a form of vibrational spectroscopy that is 
complementary to the conventional methods of infrared and Raman spectroscopies. Its usefulness 
derives from the properties of the neutron, which is a neutral particle of mass 1.00866 amu, almost 
identical to that of the hydrogen atom, 1.00794. The neutron has a magnetic moment, which has 
resulted in it becoming an essential tool for fundamental studies of magnetism [2]. Neutrons are 
scattered by atomic nuclei via the strong force and since the nucleus is only ~0.1% of the diameter of 
the atom, neutrons are highly penetrating. The nuclear scattering also means that there are no 
symmetry-based selection rules, so in principle all modes are allowed in INS spectroscopy.  
The intensity, S, of an INS transition is given by [1]: 
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Where ωi is the ith mode at transition energy ω, n = 1 for a fundamental, 2 for a first overtone or 
binary combination, 3 for a second overtone or ternary combination etc…, Q is the momentum 
transfer defined as:  

 fi kkQ −=  where k ≡ 2π λ/  (2) 
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k (Å-1) is the wavevector; λ (Å) is the wavelength of the neutron. The dependence of the scattered 
intensity on, and hence access to, Q is a major distinction between INS spectroscopy and infrared and 
Raman spectroscopies that only observe modes at Q ≈ 0. Ui is the root mean square displacement of 
the atoms in the mode. σ is the inelastic scattering cross section of the atom and this is both element 
and isotope specific and is ~20 times larger for 1H than any other nucleus (including 2H). Hydrogen is 
the lightest element, consequently its amplitude of vibration (Ui) is the largest of any element. This 
fact combined with the large cross section means that the scattering from hydrogenous materials is 
dominated by modes that involve motion of hydrogen. The exponential term in equation (1) is a 
Debye-Waller factor, UTot is the total root mean square displacement of all the atoms in all the modes, 
(both internal and external), and its magnitude is in part determined by thermal motion. This can be 
reduced by cooling the sample and so spectra are typically recorded below 30 K. 

2.  Indirect and direct INS spectrometers 
The first INS spectrometer was the triple axis spectrometer and was invented by Bertram Brockhouse 
in 1952, as described in his Nobel lecture [3]. This type of instrument, which is still in use today [4], 
employs monochromators to fix both ki and kf, thus it is enormously flexible and can (theoretically) 
access any point in (Q,ω) space. The strength of the instrument is also its Achilles heel: spectral 
acquisition is by a point-by-point method and is very slow. The throughput can be greatly increased by 
fixing either ki or kf and using a ‘white’ beam in the scattered or incident neutrons respectively. 
Instruments that fix ki or known as direct geometry instruments and those that fix kf as indirect 
geometry instruments. 

Historically, indirect geometry instruments have been used for problems that do not involve 
magnetism. Thus most studies in molecular spectroscopy and catalysis have used such instruments. 
The reasons for this are instructive. Figure 1 compares the INS, Raman and infrared spectra of 
N-phenylsuccinimide (the structure is shown as an inset to the figure), a model compound for 
bismaleimide composites. All three spectra are similar in appearance, so anyone familiar with infrared 
or Raman spectra can understand the INS spectrum. The complementarity of all three spectra is clear: 
features that are strong in one spectrum may be weak or absent in the others, thus the out-of-phase 
carbonyl stretch at 1700 cm-1 is very strong in the infrared, weak in the Raman and absent in the INS. 
Conversely, the out-of-plane carbonyl bend at 407 cm-1 is strong in the INS, weak in the Raman and  

 
Figure 1. Vibrational spectra of N-phenylsuccinimide: (a) INS recorded on 
TOSCA at 20 K, (b) Raman and (c) infrared at room temperature. 
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absent in the infrared. The transition energies are the same in all three spectra, since these are a 
molecular property, however, the intensities differ since the interactions between the probe and the 
molecule are different in all three cases. The Raman spectrum cuts-off at 200 cm-1 and the infrared at 
370 cm-1 while the INS spectrum extends to almost 0 cm-1. This is a region that can be observed by 
Raman and infrared spectroscopies but it becomes increasingly difficult (and costly) as 0 cm-1 is 
approached. The availability of a wide spectral range is particularly useful in studies of supported 
metal catalysts where the absorption of light by the support results in a spectral cut-off that can be as 
high as 1400 cm-1. For INS spectroscopy, this is irrelevant and most support materials e.g. alumina, 
silica, carbon, are transparent and the entire spectral range is accessible. Indirect geometry INS 
spectrometers are generally simple to operate with few user inputs required. For the last decade or so, 
TOSCA at ISIS has been the world’s best spectrometer of this type, this dominance is being 
challenged by the new instruments VISION at SNS and IN1-Lagrange at ILL. All three instruments 
are described in detail elsewhere in this volume. 

Direct geometry spectrometers have only recently started to be exploited for ‘non-magnetism’ 
investigations. There are several reasons why this has occurred. The first is availability. Figure 2 
shows the distribution of direct and indirect INS spectrometers and there are significantly more direct 
geometry spectrometers, particularly those with high resolution and wide spectral range. This pattern 
is likely to continue, the European Spallation Source has proposed four direct geometry spectrometers 
and only two indirect geometry spectrometers. (A complete description of the instruments available at 
neutron facilities can be found via http://neutronsources.org/neutron-centres.html). 

 
Figure 2. Distribution of INS spectrometers. Those in the pink boxes 
offer high resolution and wide spectral range, those in the blue, lower 
resolution and/or a restricted spectral range. 

A second reason is that direct geometry instruments have large detector areas which makes them 
very sensitive. Thus MAPS [5] at ISIS has ~16 m2 of detector area, in contrast TOSCA has ~0.4 m2. 
This results in a significant advantage for MAPS as shown in figure 3. It can be seen that there is a 
about a factor of three in signal-to-noise ratio in favour of MAPS. If the resolution is relaxed on 
MAPS [5] then the difference increases to ~10. If lower resolution can be employed then MERLIN [6] 
at ISIS is almost tenfold more sensitive than MAPS, by virtue of a larger solid angle of detection and 
greater incident flux by use of a guide, as shown in recent work on hydrocarbon overlayers on  
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Figure 3. Comparison of the spectra recorded on MAPS (red) and TOSCA 
(blue) from the same sample. 

Figure 4. Comparison of the INS spectra recorded on MAPS at 20 K of a series of 
palladium-based catalysts [8] that are relevant to the hydrogenation of nitroarenes to 
aminoarenes. The peak at 480 cm-1 is due to β-PdH. The carbon support and the empty 
sample can have been subtracted from the spectra. 

catalysts [7]. Supported metal catalysts with realistic metal loadings of 1-5 wt% typically have < 1 
mol% of hydrogen present, which is the detection limit on TOSCA. The improved sensitivity of the 
direct geometry instruments means that it is possible to study such systems. An example is shown in 
figure 4 for a series of palladium-based catalysts [8] that are relevant to the selective catalytic 
hydrogenation of nitroarenes to aminoarenes for use in polyurethane manufacture. A key parameter is 
the amount of hydrogen available from the catalyst via storage as β-PdH. Even for supported 
nanoscale ternary alloy particles as found in the industrial PdPtFe/C catalyst, it is still readily 
detectable at the lowest level.  
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The sensitivity advantage is likely to become less important with time as the latest generation of 
indirect geometry spectrometers, VISION at SNS and IN1-Lagrange at ILL, are optimised to have a 
very large detected flux. 

Perhaps the key difference between direct and indirect geometry spectrometers is that the former 
can access a much larger range in Q and, crucially, can always access smaller Q. This is shown in 
figure 5 which shows the (Q,ω) plot for iodomethane (methyl iodide, CH3I) recorded with incident 
energies (Ei) of 4840 and 2017 cm-1. The purple and green lines show the trajectories of the forward 
and backscattering banks on TOSCA, however, all low final energy indirect spectrometers follow 
trajectories that lie either on or between those shown. Thus there is essentially no Q-resolution, so it is 
not possible to scan Q at fixed energy transfer on any operating indirect spectrometer. It can be seen 
that large energy transfer involves large momentum transfer. The importance of this arises from 
equation (1), since higher order transitions, i.e. n ≥ 2, depend on Q2n these become significant at large 
Q and, in particular, phonon wings (combinations between internal modes and the external density of 
states) become very strong. In parallel there is an overall dampening of intensity caused by the Debye-
Waller factor. The combination of these two processes means that the fundamental transitions are 
largely swamped by the nearby higher order processes, rendering them unobservable. With a direct 
geometry spectrometer, by only using the detectors in forward scattering i.e. at low Q, high energy 
transitions are readily observable. This is illustrated in figure 6, where the data for 4 ≤ Q ≤ 10 Å-1 
obtained from figure 5 is compared to the spectrum of iodomethane recorded on TOSCA. From the 
TOSCA spectrum, figure 6a, it would be assumed that the arrowed peak at 3043 cm-1 were the 
unresolved C–H stretch modes. Inspection of the MAPS spectrum, figure 6d, has considerably better 
signal-to-noise ratio and shows a peak at 2948 cm-1 (arrowed) that is not apparent in the TOSCA data. 
In fact, this peak is the unresolved C–H stretch modes, the peaks at 3043, 3161, 3272 cm-1 are 
combinations of the C–H stretch and the intense librational mode at 112 cm-1 (CH + lib, CH + 2×lib, 
CH + 3×lib respectively).  

Figure 5. (Q,ω) plot of iodomethane recorded on MAPS at 20 K with incident 
energies of 4840 and 2017 cm-1. The solid lines are the trajectories of an indirect 
geometry instrument with a final energy of ~40 cm-1 for scattering angles of 45° 
(purple trace) and 135° (olive trace).  
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Figure 6. INS spectra of iodomethane recorded at 20 K on (a) TOSCA, (b) TOSCA 
×10 ordinate expansion of the 2500 – 4000 cm-1 region, (c) and (d) MAPS with 
incident energies of 4840 and 2017 cm-1 respectively. (c) and (d) are the data shown 
in figure 5 summed for the detectors at 4 ≤ Q ≤ 10 Å-1.  

3. The next generation - Cerberus
Figures 5 and 6 illustrate the advantages of direct geometry spectrometers: high signal-to-noise ratio, 
wide Q range and, especially, access to small Q. In addition to extending the useful energy transfer 
range, variable Q also enables higher order processes, n ≥ 2, to be distinguished [9] from fundamentals 
n = 1, via equation (1). Reducing the magnitude of the Debye-Waller factor by using small Q makes 
experiments at room temperature and above possible [10], where our experience on TOSCA has 
shown that this is not useful on indirect geometry instruments. 

While there are undoubted advantages to direct geometry instruments, there are also drawbacks. 
The most serious of these is illustrated in figure 6. Practically, for a direct geometry instrument the 
best resolution is obtained when the energy transfer is close to the incident energy and degrades with 
decreasing energy transfer, thus for figure 6d, the width of the features around 3000 cm-1 is ~60 cm-1 
(1.2% of Ei) whereas for the feature at ~900 cm-1 it is 140 cm-1 (2.9% of Ei). The width of the latter is 
entirely due to resolution broadening, as the width measured with 2017 cm-1 incident energy is 38 cm-1 
(1.9% of Ei) and by TOSCA is 14 cm-1. Thus to obtain a high resolution measurement across a wide 
spectral range, several spectra with different cm-1 Ei are needed and these are difficult to merge 
because of the varying resolution functions. In contrast, the complete spectrum is obtained in one pass 
with an indirect geometry instrument, in this case the resolution degrades with increasing energy 
transfer, ET. 

There is a further disadvantage with direct geometry instruments, their very sophistication means 
that they require significant user input. Thus at ISIS the variables are: 

Choice of instrument (×3 @ ISIS)  
Choice of Fermi chopper slit package (×3 @ MAPS) 
Choice of Fermi rotation speed (×11 @ MAPS) 
Choice of incident energy (120 – 16000 cm

-1
 @ MAPS)
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(Similar considerations apply for the SNS and J-PARC). Whereas on TOSCA the only decision is 
how long to measure for! 

It is apparent that there is considerable complementarity between direct and indirect geometry 
instruments and this is particularly manifested for molecular spectroscopy and catalysis studies. It 
would be doubly advantageous to combine both types of operation in a single instrument. This would 
enable studies across the full spectral range to be performed without the need to transfer (or prepare 
new) samples between instruments, increasing both efficiency and the certainty that the same material 
is being measured on both instruments.  

Figure 7 shows a conceptual diagram for such an instrument – Cerberus. This instrument would be 
optimised for sensitivity while maintaining reasonable resolution. The instrument would sit at 12 m 
and view an ambient temperature water moderator with a state-of-the-art neutron guide. For indirect 
geometry, it would use the large collection area analysers developed on VISION at SNS in 135° 
backscattering. This would provide a resolution of ~2.25% ET, (c.f. TOSCA ~1.25% ET). In forward 
scattering at 45° would be either more high resolution modules or, to provide sensitivity at the cost of 
resolution, would be analyser modules that each consist of a cooled beryllium + graphite filter. These 
would be designed such that they can also operate in a beryllium-only mode to further increase the 
bandpass and hence flux. The effect on the resolution is shown in figure 8, it can be seen that even at 
the lowest resolution there is still useful information to be obtained. 

Figure 7. The key components of Cerberus showing the indirect geometry detectors in backscattering 
(blue) and the area detector in forward scattering for use in direct geometry and diffraction.  

Also in forward scattering at 2.5 m from the sample will be a large area detector (angular range of 
±30° horizontal and vertical) that will be used in conjunction with a Fermi chopper in the incident 
beam, which will be moved out of the beam when the instrument is in indirect geometry mode, note 
that measuring spectra in the indirect and direct modes is not possible simultaneously. In indirect 
mode this detector will function as a low resolution, high count-rate diffraction detector, which will 
complement a high resolution diffraction detector sited in near-perfect backscattering. The direct 
geometry forward scattering detectors should offer the same energy resolution as the equivalent area 
on MERLIN, which we have shown is sufficient to distinguish aliphatic and aromatic C–H stretch 
modes [7]. To reduce the cost, the detector need not be position sensitive. Experience has shown that 
Q-resolution in the C–H/N–H/O–H stretch region (which is what this detector is needed for) is not 
essential as all the detectors are summed to improve the signal-to-noise ratio. 
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Figure 8. Simulation of the effect on the resolution on the INS spectrum of 2,5-
diiodothiophene by the use of high throughput detector banks on Cerberus. (a) 
Experimental TOSCA spectrum, (b) simulated for 12 m incident flight path (high 
resolution banks), (c) simulated for Be + C banks and (d) simulated for Be only 
banks.  

There are three fields where Cerberus would have an immediate impact: (1) catalysis, (2) proton 
conductors and (3) gas separation and storage. 

(1) Much of catalysis is concerned with the transfer of hydrogen between reagents and products 
and Cerberus is ideally suited to these type of studies. For the first time it will enable good resolution 
data to be collected on the same sample across the entire energy range. Access to the C–H/N–H/O–H 
stretch region provides a very simple means of identification and is ideally suited to quantitation of the 
species present [11]. The 0 – 2000 cm-1 region is where the details of the catalyst-adsorbate interaction 
can be discerned and the indirect backscattering detectors provide the good energy resolution needed 
for this. However, the surface species of interest are often present in low concentration and good 
resolution is of no use if there is insufficient sensitivity. This problem is addressed by the indirect 
forward scattering which will provide at least a tenfold increase in sensitivity and possibly as much as 
a 100-fold increase over the backscattering detectors. The improved sensitivity will also allow 
industrially important non-hydrogenous adsorbates , such as COx, NOx and SOx to be studied by INS 
for the first time. 

(2) Proton conductors are heavy metal oxides that are hydrated to generate mobile hydroxyls and 
have considerable potential in intermediate temperature fuel cells. These materials exhibit multiple 
sites for incorporation of hydroxyls, thus diffraction studies are only able to provide an average picture 
of the material, the crucially important local structure around the hydroxyl groups is lost. Spectroscopy 
provides this missing local picture and INS is particularly matched to these needs as the low energy 
modes that (in conjunction with first principles modelling) enable discrimination between the various 
possible sites are easily observed [12]. These modes are often weak or obscured to optical probes. 
Access to the O–H stretch region is needed to quantify the species present and to discriminate between 
hydroxyl groups and water. 

Dynamics of Molecules and Materials-II IOP Publishing
Journal of Physics: Conference Series 554 (2014) 012004 doi:10.1088/1742-6596/554/1/012004

8



(3) Gas separation is becoming an increasingly important activity with the major driver being 
the need to separate CO2 from waste streams. Recent work on TOSCA has shown that it is possible to 
detect changes in materials caused by SO2 or CO2 gas absorption [13] but that it is at the limits of 
sensitivity of the instrument. The increased flux of Cerberus will enable such studies to become 
routine. 

4. Conclusions
In this paper we have highlighted the advantages and disadvantages of the use of direct geometry 
spectrometers for molecular spectroscopy and catalysis studies. To date, these instruments have not 
been extensively used for such studies but they are likely to comprise an increasingly important 
component of the workload on such instruments. At ISIS this is already happening; currently on 
MAPS ~25% of beamtime is non-magnetism, whereas five years ago it was almost zero.  

It has become clear that both direct and indirect geometry INS spectrometers are important tools 
for the study of industrially relevant areas such as catalysis, proton conductors and gas separation. We 
strongly believe that these areas could be very effectively addressed by a novel hybrid instrument, 
Cerberus, that would offer high sensitivity and high to reasonable resolution across the entire ‘mid-
infrared’ spectral range. 
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