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Abstract 

Metal-organic framework (MOF) materials show promise for H2 storage and it is widely predicted by 
computational modelling that MOFs incorporating ultra-micropores are optimal for H2 binding due to 
enhanced overlapping potentials. We report the investigation using inelastic neutron scattering of the 
interaction of H2 in an ultra-microporous MOF material showing low H2 uptake capacity. The study has 
revealed that adsorbed H2 at 5 K has a liquid recoil motion along the channel with very little interaction with 
the MOF host, consistent with the observed low uptake. The low H2 uptake is not due to incomplete 
activation or decomposition as the desolvated MOF shows CO2 uptake with a measured pore volume close to 
that of the single crystal pore volume. This study represents a unique example of surprisingly low H2 uptake 
within a MOF material, and complements the wide range of studies on systems showing higher uptake 
capacities and binding interactions. 
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1. Introduction 

               Hydrogen (H2) is a promising alternative energy carrier not only because it can potentially achieve 

zero-carbon emission at the point of use, but also because H2 has a high energy density (33.3 kWh/kg) 

compared to hydrocarbons (12.4−13.9 kWh/kg).[1] The major scientific challenge for on-board H2 

applications is that of inventing effective and efficient H2 storage materials, and there is an ever-increasing 

worldwide interest in meeting the United States Department of Energy’s (DoE) H2 storage targets of 5.5 wt% 

gravimetric and 40 gL-1 volumetric by 2017. It is important to note that the DoE targets refer to storage 

within the whole system rather than within the storage medium alone, with a target operating temperature of 

-40 to 60 oC and an operating pressure below 100 atm. Although solid-state H2 storage based on 

chemisorption and physisorption has been extensively studied over recent years, so far no material is able to 

meet this DoE target thus presenting a major impediment for the realisation of the “Hydrogen Economy”. 

Nevertheless, physisorption of molecular H2 based upon the non-dissociative interaction in porous solids is 

an especially attractive option since it shows fast kinetics and favourable thermodynamics over multiple 

adsorption and release cycles.[2] Thus, enormous efforts have been focused on developing new porous solid 

materials for high capacity H2 storage.  

          Metal-organic framework (MOF) complexes are a sub-class of porous solids which show great 

promise for gas storage and separation due to their high surface area, low framework density, and tuneable 

functional pore environment.[3] MOF materials are usually built up from metal ions or clusters bridged by 

organic linkers to afford 3D extended frameworks with the formation of cavities ranging from microporous 

to mesoporous region. Several members within this MOF family have achieved impressively high H2 

adsorption capacities (albeit at cryogenic temperatures, typically at 77 K) [4] with a record of ~16 wt% total 

uptake capacity observed in NU-100 [5] and MOF-200.[6] However, these high uptake capacities drop 

dramatically with increasing temperature, and thus none is a practical material. There is thus particular 

emphasis on optimising the interactions between MOF hosts and adsorbed H2 molecules, and the 

identification of specific binding interactions and properties of gases within confined space represents an 

important methodology for the development of better materials that may lead us to systems of practical use. 

In situ neutron powder diffraction (NPD) at below 10 K has been used previously to determine the locations 

of D2 within a few best-behaving MOF materials incorporating exposed metal sites.[7-12] It has been found 
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that D2 can bind directly to vacant sites on metal centres, and that the adsorbed D2 molecules have molecular 

separations comparable to that to D2 in the solid state. These studies have provided invaluable structural 

rationale for their observed high gas adsorption capacities. Research has thus focused understandably on 

MOFs with high H2 uptake capacities, while materials showing very low H2 uptake and/or incorporate fully 

coordinated metal centres are often ignored for this study. Therefore, information on binding interactions 

within those low-uptake MOF systems is entirely lacking, but can still give important complementary data 

and potential understanding for the subsequent  design and optimisation of hydrogen storage materials.  

 It is critical to the success of the NPD technique that the MOF complex adsorbs a significant amount 

of D2 to boost the observed signal. This technique therefore has disadvantages when studying the binding 

interaction within MOFs with low uptakes. Furthermore, static crystallographic studies cannot provide 

insights into the dynamics of the adsorbed gas molecules. Thus, it is very challenging to probe 

experimentally the H2 binding interactions within a porous host system which has very low gas uptake due to 

the lack of suitable characterisation techniques. We report herein the application of the in situ inelastic 

neutron scattering (INS) technique to permit direct observation of the dynamics of the binding interactions 

between adsorbed H2 molecules and an aluminium-based porous MOF, NOTT-300, exhibiting moderate 

porosity, narrow pore window and very low uptake of H2. This neutron spectroscopy study reveals that 

adsorbed H2 molecules do not interact with the organic ligand within the pore channels, and form very weak 

interactions with [Al(OH)2O4] moieties via a type of through-spacing interaction (Al-O···H2). Interestingly, 

the very low H2 adsorption has been successfully characterised as weak binding interactions and, for the first 

time, we have found that the adsorbed H2 in the pore channel has a liquid type recoil motion at 5 K (below its 

melting point) as a direct result of this weak interaction to the MOF host.    

 

2. Experimental 

2.1 Synthesis 

       Synthesis of [Al2(OH)2(C16O8H6)](H2O)6 (NOTT-300-solvate) and of the desolvated material NOTT-300 

was carried out using previously reported methods.[13] 

2.2 Gas Adsorption Isotherms 



 
  

4 

 

       H2 sorption isotherm was recorded at 77 K (liquid nitrogen) on an IGA-003 system at the University of 

Nottingham under ultra-high vacuum from a diaphragm and turbo pumping system. H2 gas used was ultra-

pure research grade (99.999%) purchased from BOC. In a typical gas adsorption experiment, ~100 mg of 

NOTT-300 was loaded into the IGA, and degassed at 120 oC and high vacuum (10-10 bar) for 1 day to give 

fully desolvated NOTT-300.   

2.3 Inelastic Neutron Scattering 

        INS spectra were recorded on the TOSCA spectrometer at the ISIS Neutron Facility at the Rutherford 

Appleton Laboratory (UK) for energy transfers between ~-2 and 500 meV. In this region TOSCA has a 

resolution of ~1% ǻE/E. The sample of desolvated NOTT-300 (~2.5 g) was loaded into a cylindrical 

vanadium sample container and connected to a gas handling system. The sample was degassed at 10-7 mbar 

and 120 °C for 1 day to remove any remaining trace guest solvents. The temperature during data collection 

was controlled using the instrument built-in cryostat and electric heaters (5 ± 0.2 K). The loading of H2 was 

performed volumetrically at 40-50 K in order to ensure that H2 was adsorbed into NOTT-300. Subsequently, 

the temperature was reduced to ~5 K in order to perform the scattering measurements with the minimum 

achievable thermal motion for H2 molecules. 

 

3. Results and Discussion 

3.1 Crystal structural analysis and gas adsorption 

            NOTT-300 crystallises in a chiral space group I4122 and has an open structure comprising infinite 

chains of [AlO4(OH)2] moieties bridged by biphenyl-3,3’,5,5’-tetracarboxylate ligands L4- (Figure 1a). The 

Al(III) ion in NOTT-300 has an octahedral coordination environment with six oxygen atoms, four of which 

are from carboxylate groups and two of which are hydroxyl groups, giving an [AlO4(OH)2] moiety. These 

aluminium oxide moieties are further linked to each other via the corner-sharing hydroxyl groups ȝ2-OH. 

Al(III)-carboxylate MOFs are usually constructed from the 1D aluminium oxide chains linked by the 

carboxylate ligands (Figure 1c).[14-19] Two distinct types of aluminium oxide chains have been reported 

previously. The aluminium chain in MIL-120 is composed of [AlO2(OH)4] octahedra linking to each other 

via a common edge defined by two ȝ2–(OH) groups.[14] The different positions of the common edge in the 

two crystallographically distinct Al sites induce a cis-trans connection mode of the octahedral units, and thus 
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zigzag chains are generated. The aluminium oxide chains in MIL-53 and MIL-118 are composed of 

[AlO 4(OH)2] octahedra linked to each other via vertex-sharing ȝ2–(OH) groups.[16-18] In both case, the 

connections of the [AlO4(OH)2] octahedra adopt trans configurations, generating straight, rod-like 

aluminium building blocks. Depending on the coordination mode of the carboxylate groups, the aluminium 

chains in MIL-53 and MIL-118 show small differences in linkage of the octahedral nodes. However, in 

NOTT-300 the corner-sharing [AlO4(OH)2] octahedra in the aluminium oxide chains display a cis 

configuration, and in order to accommodate the hydroxide groups, adjacent [AlO4(OH)2] octahedra are 

rotated by 90o with respect to each other, thereby generating 41 screw axes. This type of connection is 

distinct from the other two examples, and, therefore, represents a new type of aluminium oxide building 

block (Figure 1c). The chirality of the NOTT-300 framework therefore arises from the formation of helical 

chains of [AlO4(OH)2] octahedra induced by the cis-configuration of ȝ2-OH groups. This overall 

connectivity affords a porous extended framework structure with square-shaped 1D channels with hydroxyl 

groups protruding into them, endowing the pore environment with free hydroxyl groups over four different 

directions (Figure 1b). The diameter of the channel window, taking into account the van der Waals radii of 

the surface atoms, is approximately 6-7 Å.  

        Desolvated NOTT-300 has a pore volume of 0.38 cc g-1 and a BET surface area of 1370 m2 g-1 and so 

the general porosity of NOTT-300 is moderate within the family of MOF complexes. The H2 isotherm 

(Figure 2) at 77 K for NOTT-300 shows exceptionally low adsorption uptakes (26 cc g-1 or 0.22 wt%), albeit 

NOTT-300 shows very high uptakes of CO2 (3.30 Å) and SO2(4.11 Å), both of which have a larger kinetic 

diameter than that of H2(2.89 Å). The uptake of H2 increases sharply in the low pressure region and reaches 

saturation at ~1 bar. By using the pore volume of NOTT-300 and the liquid density of H2 at its boiling point 

(20.3 K), it is estimated that NOTT-300 can hold a maximum of 2.7 wt% H2 (302 cc g-1) at saturation. 

Surprisingly, the experimental uptake is 10 times lower than this estimation, suggesting that NOTT-300 has 

unusually weak binding interaction to H2 molecules, even though the pore size of NOTT-300 (6-7 Å) is 

believed to be optimal to afford strong overlapping potential to H2 molecules and thus boost the adsorption 

uptakes. This anomalous H2 adsorption behaviour motivated us to further investigate the interactions 

between adsorbed H2 molecules and NOTT-300 host, and thus to understand its very low uptake.  

 



 
  

6 

 

3.2 Inelastic neutron scattering (INS) study 

           Direct visualisation of the interaction between adsorbed H2 molecules and the NOTT-300 host is 

crucial to understanding the detailed mechanism of interaction and hence rationalising the unusually low 

observed uptake capacity. INS is a powerful neutron spectroscopy technique which has unique advantages in 

probing H2 binding interactions by exploiting the high neutron scattering cross-section of hydrogen (82.02 

barns).[20] As a result, the INS spectrum is ultra-sensitive to the vibrations of hydrogen atoms and the 

rotations of the hydrogen molecule, with hydrogen being ten times more visible than other elements. 

          In this study, we successfully used the INS technique to investigate the binding interaction for the 

NOTT-300/H2 system albeit it has such a low H2 uptake capacity. The INS spectrum for the bare NOTT-300, 

collected at ~5 K to minimise the thermal motion of the adsorbed H2 and the framework host, was found to 

be similar to those for MOFs containing polyphenyl rings,[18,21-23] and this experimental spectrum is in 

good agreement with the INS spectrum obtained from DFT calculation (Figure 3a).[24] Upon loading with 

H2 (0.25 H2/Al and 0.50 H2/Al ) at 40-50 K, the background of the INS spectra increases due to the recoil of 

the H2 molecules, and a broad hump is observed at low energy transfers (<30 meV) confirming uptake of H2 

by NOTT-300 (Figure 3b). The difference plots, calculated by subtraction of the background spectrum (bare 

MOF material and sample container) from the data collected for each H2 loading, display a broad hump 

centred at ~20 meV with only one small energy transfer peak at 8.8 meV (Figures 3c,3d).  

          The rotational transitions of molecular H2 give a molecular proof of the local environment that the H2 

molecules experience when adsorbed on a solid surface or strongly hindered site. The rotational energy 

levels for a diatomic molecule are given by (1): 

௃ெܧ  ൌ ܬሺܬ ൅ ͳሻܤ௥௢௧                                    (1) 

 

with ܬ and ܯ  the angular momentum number and ܤ௥௢௧  is the rotational constant, that in the case of H2 ܤ௥௢௧ ൌ ͹Ǥ͵ͷ meV. There are two nuclear spin isomers of molecular hydrogen, para-hydrogen (p-H2) with 

spins paired or antiparallel (՛՝) and ortho-hydrogen (o-H2) with the spins unpaired or parallel (՛՛). Because 

quantum mechanical restrictions of the symmetry of the wave-function are responsible for the existence of 

both species, transitions between them are forbidden in optical spectroscopy, but in the case of INS the 
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transitions between p-H2 and o-H2 are allowed because the neutron can exchange spin states with the 

molecule. 

         For p-H2 in the solid state, the environment is isotropic and the main rotational transition is ܬሺͲ ՚ ͳሻ 
that manifests itself as a very sharp peak at 14.7 meV (Figure 3e). Such a peak has also been observed on 

high loadings of H2 on MgO thin films, indicating that H2 molecules are not interacting with the material 

surface.[25] In addition, a strong and broad shoulder with some weak overlying features appears at higher 

energies. This shoulder peak, centered at ca. 37 meV, is smooth except for a sharp curtailment at energies 

below the rotational transition, the intensity in this shoulder coming from rotational transitions displaced by 

the translational recoil of the H2 molecule. While the rotational line at 14.7 meV disappears completely and 

the onset of recoil occurs below the rotational transition for H2 in the liquid state, only the recoil features are 

apparent for H2 within NOTT-300 (Figure 3f). Figure 3c clearly shows the spectra of adsorbed H2 to be in a 

liquid-like state within the pore channel of NOTT-300 and not in the form of a solid on the solid surface. 

Even at higher loading where H2 adsorption in NOTT-300 reaches saturation, a very weak and broad peak at 

14.7 meV observed (Figure 3d). This peak indicates the presence of a very small amount of bulk H2 

populated on the surface of NOTT-300, but the predominant feature is the recoil signal for H2 in the liquid 

state. This observation is distinct from previous studies on adsorbed H2 which show binding to open metal 

sites which induce strong host-guest interactions to H2 molecules.[12,26] Thus, comparison of the INS 

spectra suggests that adsorbed H2 molecules have very weak interactions to the NOTT-300 host and, 

therefore, can rotate freely in the channel to give recoil rotational motion.   

For H2 adsorption on the surface of a solid material or strongly hindered active site, the degeneracy 

of a transition at 14.7 meV can be lifted as the freedom for the H2 molecule to rotate in all directions is 

restricted, thus resulting in splitting of the peak. Depending on the energy of the interaction, the peak can 

split differently, and the shift and splitting of the peaks can therefore provide important information 

regarding the different adsorption sites and their geometry.[27] Further information can also be gleaned from 

the change in the peaks on loading with H2, demonstrating site saturation and/or site interference. In this 

study, in addition to the broad hump at ~20 meV, a small peak appeared at low energy transfer, and the centre 

of mass of the rotational line of H2 is significantly shifted to 8.8 meV, indicating the presence of a type of 

specific NOTT-300-H2 interaction. To probe the site of the H2-framework interactions, it is important to 
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evaluate the accessible voids of the MOF host. The Al(III) centre in NOTT-300 is coordinated via six 

oxygen atoms to form a full octahedral coordination sphere, and can therefore be considered to be 

unavailable for direct interaction with adsorbed H2 molecules. The small increase in the intensity of this peak 

in the difference spectra upon increasing the H2 loading from 0.25 to 0.5 H2/Al suggests that the interacting 

site reaches saturation quickly, presumably owing to space constraints. Analysis of the crystal structure of 

NOTT-300 offers two possible void sites that could interact with adsorbed H2 molecules: the organic 

benzene rings and the inorganic [Al(OH)2O4] moieties. The surface area around the benzene rings is 

sufficiently large to hold one H2/Al. However, INS studies of carbon materials show that the phenyl ring 

only forms weak interactions with adsorbed H2 molecules, resulting in a small splitting or shift in the 14.7 

meV rotational line. For example, in the INS spectra for H2-loaded activated carbon materials, the splitting of 

the free rotor is very small, with peaks observed at 12.5 and 15 meV.[28] An even smaller splitting was 

observed in H2-loaded carbon nanotubes, with peaks at 13.5 and 14.5 meV.[29] Such a small energy shift 

implies that the adsorbed H2 molecules are encountering relatively little hindrance for rotation, probably 

because of the weak van der Waals interactions between hydrogen and carbon. In addition, no change to the 

molecular motion of the aromatic hydrogen atom on the phenyl rings of NOTT-300 (at ~125 meV suggested 

by the DFT calculation) was observed upon H2 loading. Therefore, the population of the INS peak in this 

study cannot be attributed to H2 interaction with the benzene rings due to the observation of a significant 

shift in the rotational line to 8.8 meV. Therefore, this leaves the [Al(OH)2O4] moiety as the likely sites within 

the channel to interact with the H2 molecules. It has been found that the interaction between H2 and oxygen 

atoms can cause a significant shift in the rotational line of H2. For example, the INS spectra for H2 adsorbed 

on MgO surface show that the rotational line is shifted to 11 meV.[25] Furthermore, INS studies on MOF-5, 

in which the Zn(II) centres are also fully coordinated by oxygen donors to form a [Zn4O(O2CR)6] building 

block, show two distinct peaks at 10 meV and 12 meV, which are attributed to H2 interactions with oxygen 

atoms from the [Zn4O(O2CR)6] building block and with the benzene ring, respectively.[21, 30] Consistent 

results were also obtained from DFT calculations of H2-loaded MOF-5, where the adsorbed H2 molecules are 

found to interact most strongly with the [Zn4O(O2CR)6] clusters and least strongly with the benzene 

rings.[31] The peak at 8.8 meV in the spectra for NOTT-300·nH2 (n=0.5, 1.0) in this study is entirely 

consistent with the INS peak (10 meV) observed for MOF-5, confirming that the adsorbed H2 molecules in 
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NOTT-300 are interacting with [Al(OH)2O4] moieties (Figure 4). Due to the space constraints and the 

possible repulsive interaction with the active hydroxyl groups ȝ2—OH around [Al(OH)2O4] moieties, this 

site is saturated very quickly upon H2 loading consistent with the observed low uptake capacity.   

 

4. Conclusions 

 INS studies on the H2-loaded material NOTT-300 have revealed the detailed binding interaction 

within this system. The adsorbed H2 molecules in NOTT-300 are found to have recoil motion along the pore 

channel with freedom to rotate in all directions, reminiscent of the behaviour of liquid H2. [Al(OH) 2O4] 

moieties within the channel can only provide binding interactions to few H2 molecules and reach saturation 

quickly consistent with the experimentally observed low H2 uptake for this material. The unusually low 

uptake of H2 in this study is related to the quantum effect of H2 which has a very low molecular mass [32] 

and the very weak interaction between the H2 and the NOTT-300 host is thus not sufficient to overcome this 

quantum effect, and therefore very little H2 is taken up by this porous material.  We have also confirmed that 

the ultra-low H2 uptake is not due to incomplete activation or MOF decomposition as the desolvated MOF 

shows very high CO2 uptake with a measured pore volume close to that of the single crystal pore volume 
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Figures and Legends     

                    

 

  
                                a                                                                  b                                                     c 
 
 
Figure 1. (a) View of the 3D framework structure of NOTT-300 along the c-axis. (b) View of the 1D square-shaped 
channel. The ȝ2-(OH) groups protruded into the centre of the channel are highlighted in space-filling mode. (c) 
Comparison of the structural configurations of [AlOn(OH)6-n] (0 ≤ n ≤ 6) chains in different MOFs. (Al: green; carbon: 
grey; oxygen: red; hydrogen: white; [AlOn(OH)6-n]: green octahedron; oxygen atoms of hydroxide groups in figure c are 
highlighted in purple)  
  

 

  
 
 
 
 
 

 
 

Figure 2. H2 adsorption isotherm at 77 K for NOTT-300. The details at low pressure region are shown in the inset 
figure. 
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                                       a                                                                                       b 

 
                                         c                                                                                     d      

         
                                           e                                                                                   f 
Figure 3. (a) Comparison of the experimental (top) and DFT simulated (bottom) INS spectra for bare NOTT-300. (b) 
Comparison of INS spectra for bare NOTT-300, NOTT-300·0.5 H2 and NOTT-300·1.0 H2. (c) Difference INS spectra 
between NOTT-300 and NOTT-300·0.5 H2. A detailed view of the low energy transfers is shown as inset figure. (d) 
Difference INS spectra between NOTT-300 and NOTT-300·1.0 H2. A detailed view of the low energy transfers is 
shown as inset figure. (e) INS spectra for condensed H2 at 13, 14, and 17 K to show the transition between solid to 
liquid states. (f) INS spectrum for condensed liquid H2.  
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Figure 4. Schematic view of weakly adsorbed H2 molecules (highlighted in space-filling model) in the channel of 
NOTT-300 with very weak interactions to the pore surface (Al: green; carbon: grey; oxygen: red; hydrogen: white).  
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An experimental investigation by inelastic neutron scattering of the 
binding interactions of H2 in a MOF material showing low H2 uptake 
capacity reveals that adsorbed H2 at 5 K has a liquid recoil motion 
along the channel with very little interaction with the MOF host, 
primarily to the [Al(OH)2O4] moiety, consistent with the observed 
low uptake. 


