35 research outputs found

    The Broad Concept of "Spasticity-Plus Syndrome" in Multiple Sclerosis: A Possible New Concept in the Management of Multiple Sclerosis Symptoms

    Get PDF
    Multiple sclerosis (MS) pathology progressively affects multiple central nervous system (CNS) areas. Due to this fact, MS produces a wide array of symptoms. Symptomatic therapy of one MS symptom can cause or worsen other unwanted symptoms (anticholinergics used for bladder dysfunction produce impairment of cognition, many MS drugs produce erectile dysfunction, etc.). Appropriate symptomatic therapy is an unmet need. Several important functions/symptoms (muscle tone, sleep, bladder, pain) are mediated, in great part, in the brainstem. Cannabinoid receptors are distributed throughout the CNS irregularly: There is an accumulation of CB1 and CB2 receptors in the brainstem. Nabiximols (a combination of THC and CBD oromucosal spray) interact with both CB1 and CB2 receptors. In several clinical trials with Nabiximols for MS spasticity, the investigators report improvement not only in spasticity itself, but also in several functions/symptoms mentioned before (spasms, cramps, pain, gait, sleep, bladder function, fatigue, and possibly tremor). We can conceptualize and, therefore, hypothesize, through this indirect information, that it could be considered the existence of a broad "Spasticity-Plus Syndrome" that involves, a cluster of symptoms apart from spasticity itself, the rest of the mentioned functions/symptoms, probably because they are interlinked after the increase of muscle tone and mediated, at least in part, in the same or close areas of the brainstem. If this holds true, there exists the possibility to treat several spasticity-related symptoms induced by MS pathology with a single therapy, which would permit to avoid the unnecessary adverse effects produced by polytherapy. This would result in an important advance in the symptomatic management of MS

    J-PLUS: Photometric Re-calibration with the Stellar Color Regression Method and an Improved Gaia XP Synthetic Photometry Method

    Full text link
    We employ the corrected Gaia Early Data Release 3 (EDR3) photometric data and spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) DR7 to assemble a sample of approximately 0.25 million FGK dwarf photometric standard stars for the 12 J-PLUS filters using the Stellar Color Regression (SCR) method. We then independently validated the J-PLUS DR3 photometry, and uncovered significant systematic errors: up to 15 mmag in the results of Stellar Locus (SL) method, and up to 10 mmag mainly caused by magnitude-, color-, and extinction-dependent errors of the Gaia XP spectra with the Gaia BP/RP (XP) Synthetic Photometry (XPSP) method. We have also further developed the XPSP method using the corrected Gaia XP spectra by Huang et al. (2023) and applied it to the J-PLUS DR3 photometry. This resulted in an agreement of 1-5 mmag with the SCR method, and a two-fold improvement in the J-PLUS zero-point precision. Finally, the zero-point calibration for around 91% of the tiles within the LAMOST observation footprint is determined through the SCR method, with the remaining approximately 9% of tiles outside this footprint relying on the improved XPSP method. The re-calibrated J-PLUS DR3 photometric data establishes a solid data foundation for conducting research that depends on high-precision photometric calibration.Comment: 21 papes; 20 figures, submitted, see main results in Figures 5 and 1

    Prevalence of Grey Matter Pathology in Early Multiple Sclerosis Assessed by Magnetization Transfer Ratio Imaging

    Get PDF
    The aim of the study was to assess the prevalence, the distribution and the impact on disability of grey matter (GM) pathology in early multiple sclerosis. Eighty-eight patients with a clinically isolated syndrome with a high risk developing multiple sclerosis were included in the study. Forty-four healthy controls constituted the normative population. An optimized statistical mapping analysis was performed to compare each subject's GM Magnetization Transfer Ratio (MTR) imaging maps with those of the whole group of controls. The statistical threshold of significant GM MTR decrease was determined as the maximum p value (p<0.05 FDR) for which no significant cluster survived when comparing each control to the whole control population. Using this threshold, 51% of patients showed GM abnormalities compared to controls. Locally, 37% of patients presented abnormalities inside the limbic cortex, 34% in the temporal cortex, 32% in the deep grey matter, 30% in the cerebellum, 30% in the frontal cortex, 26% in the occipital cortex and 19% in the parietal cortex. Stepwise regression analysis evidenced significant association (p = 0.002) between EDSS and both GM pathology (p = 0.028) and T2 white matter lesions load (p = 0.019). In the present study, we evidenced that individual analysis of GM MTR map allowed demonstrating that GM pathology is highly heterogeneous across patients at the early stage of MS and partly underlies irreversible disability

    Gray matter imaging in multiple sclerosis: what have we learned?

    Get PDF
    At the early onset of the 20th century, several studies already reported that the gray matter was implicated in the histopathology of multiple sclerosis (MS). However, as white matter pathology long received predominant attention in this disease, and histological staining techniques for detecting myelin in the gray matter were suboptimal, it was not until the beginning of the 21st century that the true extent and importance of gray matter pathology in MS was finally recognized. Gray matter damage was shown to be frequent and extensive, and more pronounced in the progressive disease phases. Several studies subsequently demonstrated that the histopathology of gray matter lesions differs from that of white matter lesions. Unfortunately, imaging of pathology in gray matter structures proved to be difficult, especially when using conventional magnetic resonance imaging (MRI) techniques. However, with the recent introduction of several more advanced MRI techniques, the detection of cortical and subcortical damage in MS has considerably improved. This has important consequences for studying the clinical correlates of gray matter damage. In this review, we provide an overview of what has been learned about imaging of gray matter damage in MS, and offer a brief perspective with regards to future developments in this field

    J-PLUS:Photometric calibration of large area multi-filter surveys with stellar and white dwarf loci

    Get PDF
    We present the photometric calibration of the twelve optical passbands observed by the Javalambre Photometric Local Universe Survey (J-PLUS). The proposed calibration method has four steps: (i) definition of a high-quality set of calibration stars using Gaia information and available 3D dust maps; (ii) anchoring of the J-PLUS gri passbands to the Pan-STARRS photometric solution, accounting for the variation of the calibration with the position of the sources on the CCD; (iii) homogenization of the photometry in the other nine J-PLUS filters using the dust de-reddened instrumental stellar locus in (X - r) versus (g - i) colours, where X is the filter to calibrate. The zero point variation along the CCD in these filters was estimated with the distance to the stellar locus. Finally, (iv) the absolute colour calibration was obtained with the white dwarf locus. We performed a joint Bayesian modelling of eleven J-PLUS colour-colour diagrams using the theoretical white dwarf locus as reference. This provides the needed offsets to transform instrumental magnitudes to calibrated magnitudes outside the atmosphere. The uncertainty of the J-PLUS photometric calibration, estimated from duplicated objects observed in adjacent pointings and accounting for the absolute colour and flux calibration errors, are ~19 mmag in u, J0378 and J0395, ~11 mmag in J0410 and J0430, and ~8 mmag in g, J0515, r, J0660, i, J0861, and z. We present an optimized calibration method for the large area multi-filter J-PLUS project, reaching 1-2% accuracy within an area of 1 022 square degrees without the need for long observing calibration campaigns or constant atmospheric monitoring. The proposed method will be adapted for the photometric calibration of J-PAS, that will observe several thousand square degrees with 56 narrow optical filters

    J-PLUS: The Javalambre Photometric Local Universe Survey

    Get PDF
    The Javalambre Photometric Local Universe Survey (J-PLUS) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofisico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg(2) mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500-10 000 angstrom). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000 angstrom Balmer break region, H delta, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB similar to 21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the delta z/(1 + z) similar to 0.005-0.03 precision level) for moderately bright (up to r similar to 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O II]/lambda 3727, H alpha/lambda 6563) up to z < 0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z approximate to 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first similar to 1000 deg(2) of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r < 21 mag. With a goal of 8500 deg(2) for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey

    Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis

    Get PDF
    Supported by F. Hoffmann–La Roche
    corecore