64 research outputs found

    A Study of starless dark cloud LDN 1570: Distance, Dust properties and Magnetic field geometry

    Full text link
    We wish to map the magnetic field geometry and to study the dust properties of the starless cloud, L1570, using multi-wavelength optical polarimetry and photometry of the stars projected on the cloud. We made R-band imaging polarimetry of the stars projected on a cloud, L1570, to trace the magnetic field orientation. We also made multi-wavelength polarimetric and photometric observations to constrain the properties of dust in L1570. We estimated a distance of 394 +/- 70 pc to the cloud using 2MASS JHKs colours. Using the values of the Serkowski parameters namely σ1\sigma_{1}, ϵˉ\bar \epsilon, {\lambda}max and the position of the stars on near infrared color-color diagram, we identified 13 stars that could possibly have intrinsic polarization and/or rotation in their polarization angles. One star, 2MASS J06075075+1934177, which is a B4Ve spectral type, show the presence of diffuse interstellar bands in the spectrum apart from showing H{\alpha} line in emission. There is an indication for the presence of slightly bigger dust grains towards L1570 on the basis of the dust grain size-indicators such as {\lambda}max and Rv values. The magnetic field lines are found to be parallel to the cloud structures seen in the 250{\mu}m images (also in 8{\mu}m and 12{\mu}m shadow images) of L1570. Based on the magnetic field geometry, the cloud structure and the complex velocity structure, we believe that L1570 is in the process of formation due to the converging flow material mediated by the magnetic field lines. Structure function analysis showed that in the L1570 cloud region the large scale magnetic fields are stronger when compared with the turbulent component of magnetic fields. The estimated magnetic field strengths suggest that the L1570 cloud region is sub-critical and hence could be strongly supported by the magnetic field lines.Comment: 26 pages, 22 figures, and 7 tables; Accepted for its publication in A&

    Prospects for multiwavelength polarization observations of GRB afterglows and the case GRB 030329

    Full text link
    We explore the prospects for simultaneous, broad-band, multiwavelength polarimetric observations of GRB afterglows. We focus on the role of cosmic dust in GRB host galaxies on the observed percentage polarization of afterglows in the optical/near-infrared bands as a function of redshift. Our driving point is the afterglow of GRB 030329, for which we obtained polarimetric data in the R band and K band simultaneously about 1.5 days after the burst. We argue that polarimetric observations can be very sensitive to dust in a GRB host, because dust can render the polarization of an afterglow wavelength-dependent. We discuss the consequences for the interpretation of observational data and emphasize the important role of very early polarimetric follow-up observations in all bands, when afterglows are still bright, to study the physical properties of dust and magnetic fields in high-z galaxies.Comment: accepted for publication in Astronomy & Astrophysic

    Robotic Laser-Adaptive-Optics Imaging of 715 Kepler Exoplanet Candidates using Robo-AO

    Get PDF
    The Robo-AO Kepler Planetary Candidate Survey is designed to observe every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper we present the results from the 2012 observing season, searching for stars close to 715 representative Kepler planet candidate hosts. We find 53 companions, 44 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from 0.15" to 2.5" separation, with contrast ratios up to delta-m~6. We measure an overall nearby-star-probability for Kepler planet candidates of 7.4% +/- 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several KOIs of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are "coincident multiple" systems, with several transiting planets shared between the two stars. Finally, we detect 2.6-sigma evidence for <15d-period giant planets being 2-3 times more likely be found in wide stellar binaries than smaller close-in planets and all sizes of further-out planets.Comment: Accepted by ApJ. Minor updates & improved statistical analysis; no changes to results. 15 pages, 13 figure

    An ingress and a complete transit of HD 80606 b

    Full text link
    We have used four telescopes at different longitudes to obtain near-continuous lightcurve coverage of the star HD 80606 as it was transited by its \sim 4-MJup planet. The observations were performed during the predicted transit windows around the 25th of October 2008 and the 14th of February 2009. Our data set is unique in that it simultaneously constrains the duration of the transit and the planet's period. Our Markov-Chain Monte Carlo analysis of the light curves, combined with constraints from radial-velocity data, yields system parameters consistent with previously reported values. We find a planet-to-star radius ratio marginally smaller than previously reported, corresponding to a planet radius of Rp = 0.921 \pm 0.036RJup .Comment: 6 pages, 2 figures, MNRAS accepte

    RoboPol: First season rotations of optical polarization plane in blazars

    Get PDF
    We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring program of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma rays is investigated using the dataset obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations have significantly larger amplitude and faster variations of polarization angle in optical than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability 1.5×102\le 1.5 \times 10^{-2}) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (5×105\sim 5 \times 10^{-5}) that none of our rotations is physically connected with an increase in gamma-ray activity.Comment: 16 pages, 9 figure

    Robo-AO: autonomous and replicable laser-adaptive-optics and science system

    Get PDF
    We have created a new autonomous laser-guide-star adaptive-optics (AO) instrument on the 60-inch (1.5-m) telescope at Palomar Observatory called Robo-AO. The instrument enables diffraction-limited resolution observing in the visible and near-infrared with the ability to observe well over one-hundred targets per night due to its fully robotic operation. Robo-AO is being used for AO surveys of targets numbering in the thousands, rapid AO imaging of transient events and long-term AO monitoring not feasible on large diameter telescope systems. We have taken advantage of cost-effective advances in deformable mirror and laser technology while engineering Robo-AO with the intention of cloning the system for other few-meter class telescopes around the world

    A survey of the high order multiplicity of nearby solar-type binary stars with Robo-AO

    Get PDF
    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the SDSS ii' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 1010'' to quantify the still poorly constrained frequency of their sub-systems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary sub-systems with periods from 103.510^{3.5} to 10510^5 days is 0.12±\pm0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of sub-systems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100~yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a sub-sample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 10610^6 to 107.510^{7.5} days (separations on the order of 500~AU), the frequency of tertiary components is 0.16±\pm0.03, exceeding by almost a factor of two the frequency of similar systems among all targets (0.09)

    Search for astro-gravity correlations

    Get PDF
    A new approach in the gravitational wave experiment is considered. In addition to the old method of searching for coincident reactions of two separated gravitational antennae it was proposed to seek perturbations of the gravitational detector noise background correlated with astrophysical events such as neutrino and gamma ray bursts which can be relaibly registered by correspondent sensors. A general algorithm for this approach is developed. Its efficiency is demonstrated in reanalysis of the old data concerning the phenomenon of neutrino-gravity correlation registered during of SN1987A explosion.Comment: 29 pages (LaTeX), 4 figures (EPS

    Strategies for prompt searches for GRB afterglows: the discovery of the GRB 001011 optical/near-infrared counterpart using colour-colour selection

    Get PDF
    We report the discovery of the optical and near-infrared counterparts to GRB 001011. The GRB 001011 error box determined by Beppo-SAX was simultaneously imaged in the near-infrared by the 3.58-m New Technology Telescope and in the optical by the 1.54-m Danish Telescope ~8 hr after the gamma-ray event. Here we implement the colour-colour discrimination technique proposed by Rhoads (2001) and extend it using near-IR data as well. We present the results provided by an automatic colour-colour discrimination pipe-line developed to discern the different populations of objects present in the GRB 001011 error box. Our software revealed three candidates based on single-epoch images. Second-epoch observations carried out ~3.2 days after the burst revealed that the most likely candidate had faded, thus identifying it with the counterpart to the GRB. In deep R-band images obtained 7 months after the burst a faint (R=25.38+/-0.25) elongated object, presumably the host galaxy of GRB 001011, was detected at the position of the afterglow. The GRB 001011 afterglow is the first discovered with the assistance of colour-colour diagram techniques. We discuss the advantages of using this method and its application to error boxes determined by future missions.Comment: Accepted for publication in Astronomy and Astrophysics, 13 pages, 16 figure

    Starlight-polarization-based tomography of the magnetized ISM: Pasiphae's line-of-sight inversion method

    Full text link
    We present the first Bayesian method for tomographic decomposition of the plane-of-sky orientation of the magnetic field with the use of stellar polarimetry and distance. This standalone tomographic inversion method presents an important step forward in reconstructing the magnetized interstellar medium (ISM) in 3D within dusty regions. We develop a model in which the polarization signal from the magnetized and dusty ISM is described by thin layers at various distances. Our modeling makes it possible to infer the mean polarization (amplitude and orientation) induced by individual dusty clouds and to account for the turbulence-induced scatter in a generic way. We present a likelihood function that explicitly accounts for uncertainties in polarization and parallax. We develop a framework for reconstructing the magnetized ISM through the maximization of the log-likelihood using a nested sampling method. We test our Bayesian inversion method on mock data taking into account realistic uncertainties from GaiaGaia and as expected for the optical polarization survey PASIPHAE according to the currently planned observing strategy. We demonstrate that our method is effective in recovering the cloud properties as soon as the polarization induced by a cloud to its background stars is higher than 0.1%\sim 0.1\%, for the adopted survey exposure time and level of systematic uncertainty. Our method makes it possible to recover not only the mean polarization properties but also to characterize the intrinsic scatter, thus opening ways to characterize ISM turbulence and the magnetic field strength. Finally, we apply our method to an existing dataset of starlight polarization with known line-of-sight decomposition, demonstrating agreement with previous results and an improved quantification of uncertainties in cloud properties.Comment: 28 pages, including 2 appendices, submitted to A&
    corecore