21 research outputs found

    Optimum sowing time of quinoa (Chenopodium quinoa Willd) in Telangana State, India

    Get PDF
    A field experiment was conducted in 2016-17 and 2017-18 during Rabi season at Regional Agricultural Research Station, Palem, Nagarkurnool District of Telangana State, India. The treatments consisted of 7 sowing dates with 15-day intervals (T1- October 10th, T2- October 25th, T3- November 10th, T4- November 25th, T5- December 10th, T6- December 25th and T7- January 10th). The experiment was laid out in a randomized block design and was replicated three times. This study was conducted with the objective of determining the optimum sowing time for quinoa in Telangana state, India. A greater seed yield was detected for the crops sown between October 10th (2174 kg/ha) and November 25th (1931 kg/ha); on further delay in sowing after November 25th, i.e., December 10th (1026 kg/ha), December 25th (600 kg/ha) and January 10th (590 kg/ha), the seed yields were drastically reduced due to the higher temperature at the reproductive stage of the crop. Hence, from this study, it can be noted that the optimum sowing date for quinoa in Telangana was from October 10th to November 25th

    Titrimetric and spectrophotometric assay of diethylcarbamazine citrate in formulations using iodate and iodide mixture as reagents

    Get PDF
    One titrimetric and two spectrophotometric methods are proposed for the determination of diethylcarbamazine citrate (DEC) in bulk drug and in formulations using potassium iodate and potassium iodide as reagent. The methods employ the well-known analytical reaction between iodate and iodide in the presence of acid. In titrimetry (method A), the drug was treated with a measured excess of thiosulfate in the presence of unmeasured excess of iodate-iodide mixture and after a standing time of 10 min, the surplus thiosulfate was determined by back titration with iodine towards starch end point. Titrimetric assay is based on a 1:3 reaction stoichiometry between DEC and iodine and the method is applicable over 2.0-10.0 mg range. The liberated iodine is measured spectrophotometrically at 370 nm (method B) or the iodine-starch complex measured at 570 nm (method C). In both methods, the absorbance is found to be linearly dependent on the concentration of iodine, which in turn is related to DEC concentration. The calibration curves are linear over 2.5-50 and 2.5-30 µg mL-1 DEC for method B and method C, respectively. The calculated molar absorptivity and Sandell sensitivity values were 6.48×103 L mol-1 cm-1 and 0.0604 µg cm-2, respectively, for method B, and their respective values for method C are 9.96×103 L mol-1 cm-1 and 0.0393 µg cm-2. The intra-day and inter-day accuracy and precision studies were carried out according to the ICH guidelines. The methods were successfully applied to the analysis of DEC formulations

    Effect of oxygen partial pressure on the microstructural, optical and gas sensing characterization of nanostructured Gd doped ceria thin films deposited by pulsed laser deposition

    No full text
    Microstructural properties of 10 mol% gadolinium doped ceria (CeO2) thin films that were deposited on quartz substrate at substrate temperature of 1023 K by using pulsed laser deposition with different oxygen partial pressures in the range of 50–200 mTorr. The influence of oxygen partial pressure on microstructural, morphological, optical and gas sensing characterization of the thin films was systematically studied. The microstructure of the thin films was investigated using X-ray diffraction, atomic force microscopy and Raman spectroscopy. Morphological studies have been carried out using scanning electron microscope. The experimental results confirmed that the films were polycrystalline in nature with cubic fluorite structure. Optical properties of the thin films were examined using UV–vis spectrophotometer. The optical band gap calculated from Tauc’s relation. Gas sensing characterization has been carried at different operating temperatures (room temperature to 523 K) for acetone gas. Response and recovery times of the sensor were calculated using transient response plot

    An implicit Keller box approach for solution of MHD three-dimensional flow through a porous medium

    No full text
    The present study investigates the Soret and Dufour effect on free-convection flow of a viscous incompressible fluid through a porous medium bounded by an infinite vertical porous plate with chemical reaction and viscous dissipation is investigated with aid of Implicit Keller box and regular perturbation methods. The flow is assumed in the presence of transverse magnetic field. Characteristics of Velocity, Temperature and Concentration are obtained and graphical interpretation is made. The observation of these results reflects that velocity and thermal boundary layer thickness decrease with the increase of radiation parameter. Graphical interpretations establish a good agreement in a realistic sense
    corecore