100 research outputs found
Hydrodynamic theory for granular gases
A granular gas subjected to a permanent injection of energy is described by
means of hydrodynamic equations derived from a moment expansion method. The
method uses as reference function not a Maxwellian distribution but
a distribution , such that adds a fourth cumulant
to the velocity distribution. The formalism is applied to a stationary
conductive case showing that the theory fits extraordinarily well the results
coming from our molecular dynamic simulations once we determine as a
function of the inelasticity of the particle-particle collisions. The shape of
is independent of the size of the system.Comment: 10 pages, 9 figures, more about our research in
http://www.cec.uchile.cl/cinetica
Diverse consequences of algorithmic probability
We reminisce and discuss applications of algorithmic probability to a wide range of problems in artificial intelligence, philosophy and technological society. We propose that Solomonoff has effectively axiomatized the field of artificial intelligence, therefore establishing it as a rigorous scientific discipline. We also relate to our own work in incremental machine learning and philosophy of complexity. © 2013 Springer-Verlag Berlin Heidelberg
GeoTraductores: A Collaborative Initiative Democratizing Science Communication in Latin America
GeoTraductores is an collaborative initiative between Eos, Planeteando, andGeoLatinas that aims to provide Spanish-speaking communities access to current scientific findings. This goal is accomplished by translating science articles originally published in English on AGU's Eos.org, within their Science News magazine, into Spanish. This cross-organizational initiative has translated, edited, and published over 150 articles, breaking the language barrier for Spanish-speaking communities. Our experience since 2020 has allowed us to tailor an efficient co-production model, which starts with (a) the selection of articles of interest to translate, followed by (b) the translation, reviewing, and editing process by volunteers, and (c) the publication and social media dissemination of the translated article. The tangible impact of GeoTraductores is evident in the substantial surge of visitor traffic to the Eos website between 2020 and 2023, particularly from Latin American countries. Notably, increases exceeding 85% were observed in Colombia, Mexico, and Panama, with 20% or greater growth in Chile, Brazil, Costa Rica, Peru, and Ecuador, confirming the initiative's success in meeting a genuine need. This impact extends globally, with Spain experiencing a 40% increase in visitors. Our co-production model is possible thanks to the contribution of around 40 GeoTraductores, mainly women (85%), who are native Spanish speakers or bilingual (Spanish and English speaking). These early-career scientists, through their volunteer work, enhance their bilingual communication skills while breaking down language barriers in science communication. The Eos-Planeteando-GeoLatinas co-production model fosters science democratization for Latin America while promoting diversity, equity, and inclusion in Earth Sciences, one translation at a time
The WEBT BL Lacertae Campaign 2001 and its extension : Optical light curves and colour analysis 1994–2002
BL Lacertae has been the target of four observing campaigns by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we present UBVRI light curves obtained by theWEBT from 1994 to 2002, including the last, extended BL Lac 2001 campaign. A total of about 7500 optical observations performed by 31 telescopes from Japan to Mexico have been collected, to be added to the ∼15 600 observations of the BL Lac Campaign 2000. All these data allow one to follow the source optical emission behaviour with unprecedented detail. The analysis of the colour indices reveals that the flux variability can be interpreted in terms of two components: longer-term variations occurring on a fewday time scale appear as mildly-chromatic events, while a strong bluer-when-brighter chromatism characterizes very fast (intraday) flares. By decoupling the two components, we quantify the degree of chromatism inferring that longer-term flux changes imply moving along a ∼0.1 bluerwhen- brighter slope in the B − R versus R plane; a steeper slope of ∼0.4 would distinguish the shorter-term variations. This means that, when considering the long-term trend, the B-band flux level is related to the R-band one according to a power law of index ∼1.1. Doppler factor variations on a “convex” spectrum could be the mechanism accounting for both the long-term variations and their slight chromatism.Reig Torres, Pablo, [email protected]
Future research directions in pneumonia
Pneumonia is a complex pulmonary disease in need of new clinical approaches. Although triggered by a pathogen, pneumonia often results from dysregulations of host defense that likely precede infection. The coordinated activities of immune resistance and tissue resilience then dictate whether and how pneumonia progresses or resolves. Inadequate or inappropriate host responses lead to more severe outcomes such as acute respiratory distress syndrome and to organ dysfunction beyond the lungs and over extended time frames after pathogen clearance, some of which increase the risk for subsequent pneumonia. Improved understanding of such host responses will guide the development of novel approaches for preventing and curing pneumonia and for mitigating the subsequent pulmonary and extrapulmonary complications of pneumonia. The NHLBI assembled a working group of extramural investigators to prioritize avenues of host-directed pneumonia research that should yield novel approaches for interrupting the cycle of unhealthy decline caused by pneumonia. This report summarizes the working group’s specific recommendations in the areas of pneumonia susceptibility, host response, and consequences. Overarching goals include the development of more host-focused clinical approaches for preventing and treating pneumonia, the generation of predictive tools (for pneumonia occurrence, severity, and outcome), and the elucidation of mechanisms mediating immune resistance and tissue resilience in the lung. Specific areas of research are highlighted as especially promising for making advances against pneumonia
Tissue culture of ornamental cacti
Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family
Threshold π<sup>0</sup> photoproduction on transverse polarised protons at MAMI
Polarisation-dependent differential cross sections σTσT associated with the target asymmetry T have been measured for the reaction View the MathML sourceγp→→pπ0 with transverse target polarisation from π0π0 threshold to photon energies of 190 MeV. The data were obtained using a frozen-spin butanol target with the Crystal Ball / TAPS detector set-up and the Glasgow photon tagging system at the Mainz Microtron MAMI. Results for σTσT have been used in combination with our previous measurements of the unpolarised cross section σ0σ0 and the beam asymmetry Σ for a model-independent determination of S- and P -wave multipoles in the π0π0 threshold region, which includes for the first time a direct determination of the imaginary part of the E0+E0+ multipole
Helium identification with LHCb
The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei
- …