26 research outputs found

    Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes

    Full text link
    We present observations of the interstellar interloper 1I/2017 U1 ('Oumuamua) taken during its 2017 October flyby of Earth. The optical colors B-V = 0.70±\pm0.06, V-R = 0.45±\pm0.05, overlap those of the D-type Jovian Trojan asteroids and are incompatible with the ultrared objects which are abundant in the Kuiper belt. With a mean absolute magnitude HVH_V = 22.95 and assuming a geometric albedo pVp_V = 0.1, we find an average radius of 55 m. No coma is apparent; we deduce a limit to the dust mass production rate of only \sim 2×\times104^{-4} kg s1^{-1}, ruling out the existence of exposed ice covering more than a few m2^2 of the surface. Volatiles in this body, if they exist, must lie beneath an involatile surface mantle \gtrsim0.5 m thick, perhaps a product of prolonged cosmic ray processing in the interstellar medium. The lightcurve range is unusually large at \sim2.0±\pm0.2 magnitudes. Interpreted as a rotational lightcurve the body has semi-axes \sim230 m ×\times 35 m. A \sim6:1 axis ratio is extreme relative to most small solar system asteroids and suggests that albedo variations may additionally contribute to the variability. The lightcurve is consistent with a two-peaked period \sim8.26 hr but the period is non-unique as a result of aliasing in the data. Except for its unusually elongated shape, 1I/2017 U1 is a physically unremarkable, sub-kilometer, slightly red, rotating object from another planetary system. The steady-state population of similar, \sim100 m scale interstellar objects inside the orbit of Neptune is \sim104^4, each with a residence time \sim10 yr.Comment: 25 Pages, 2 Tables, 7 Figures; submitted to ApJ

    Detecting metal-rich intermediate-age globular clusters in NGC4570 using K-band photometry

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0093-8Globular cluster systems (GCSs) of most early-type galaxies feature two peaks in their optical colour distributions. Blue-peak globular clusters (GCs) are believed to be old and metal-poor, whereas the ages, metallicities, and the origin of the red-peak GCs are still being debated. We obtained deep K-band photometry and combined it with Hubble Space Telescope observations in g and z to yield a full spectral energy distribution from the optical to the near-infrared. This now allows us to break the age–metallicity degeneracy. We used our evolutionary synthesis models galev for star clusters to compute a large grid of models with different metallicities and a wide range of ages. Comparing these models to our observations revealed a large population of intermediate-age (1–3 Gyr) and metal-rich (≈solar-metallicity) GCs, that will give us further insights into the formation history of this galaxy.Peer reviewe

    A population of faint low surface brightness galaxies in the Perseus cluster core

    Get PDF
    We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named ‘ultra-diffuse galaxies’, with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec−2, total V-band magnitudes −11.8 to −15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 square degrees, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster – with its comparable central density to Perseus – show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters

    Hubble Space Telescope Observations of Tadpole Galaxies Kiso 3867, SBS0, SBS1, and UM461

    Full text link
    Tadpole galaxies are metal-poor dwarfs with typically one dominant star-forming region, giving them a head-tail structure when inclined. A metallicity drop in the head suggests that gas accretion with even lower metallicity stimulated the star formation. Here we present multiband HST WFC3 and ACS images of four nearby (<25 Mpc) tadpoles, SBS0, SBS1, Kiso 3867, and UM461, selected for their clear metallicity drops shown in previous spectroscopic studies. Properties of the star complexes and compact clusters are measured. Each galaxy contains from 3 to 10 young stellar complexes with 10^3-10^5 Msun of stars ~3-10 Myr old. Between the complexes, the disk has a typical age of ~3 Gyr. Numerous star clusters cover the galaxies, both inside and outside the complexes. The combined cluster mass function, made by normalizing the masses and counts before stacking, is a power law with a slope of -1.12+-0.14 on a log-log plot and the combined distribution function of cluster lifetime decays with age as t^{-0.65+-0.24}. A comparison between the summed theoretical Lyman continuum (LyC) emission from all the clusters, given their masses and ages, is comparable to or exceeds the LyC needed to excite the observed Halpha in some galaxies, suggesting LyC absorption by dust or undetected gas in the halo, or perhaps galaxy escape.Comment: 20 pages, 16 figures, accepted by Ap

    A Catalog of Galaxies in the Direction of the Perseus Cluster

    Get PDF
    We present a catalog of 5437 morphologically classified sources in the direction of the Perseus galaxy cluster core, among them 496 early-type low-mass galaxy candidates. The catalog is primarily based on V-band imaging data acquired with the William Herschel Telescope, which we used to conduct automated source detection and derive photometry. We additionally reduced archival Subaru multiband imaging data in order to measure aperture colors and perform a morphological classification, benefiting from 0.″5 seeing conditions in the r-band data. Based on morphological and color properties, we extracted a sample of early-type low-mass galaxy candidates with absolute V-band magnitudes in the range of −10 to −20 mag. In the color─magnitude diagram, the galaxies are located where the red sequence for early-type cluster galaxies is expected, and they lie on the literature relation between absolute magnitude and Sérsic index. We classified the early-type dwarf candidates into nucleated and nonnucleated galaxies. For the faint candidates, we found a trend of increasing nucleation fraction toward brighter luminosity or higher surface brightness, similar to what is observed in other nearby galaxy clusters. We morphologically classified the remaining sources as likely background elliptical galaxies, late-type galaxies, edge-on disk galaxies, and likely merging systems and discussed the expected contamination fraction through non-early-type cluster galaxies in the magnitude-size surface brightness parameter space. Our catalog reaches its 50% completeness limit at an absolute V-band luminosity of −12 mag and a V-band surface brightness of 26 mag arcsec−2. This makes it the largest and deepest catalog with coherent coverage compared to previous imaging studies of the Perseus cluster.</p

    GALEV evolutionary synthesis models – I. Code, input physics and web interface

    Get PDF
    ‘The definitive version is available at: www3.interscience.wiley.com '. Copyright Blackwell / Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.14717.xgalev (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star formation shortly after the big bang until today. For galaxies, galev includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for what we call a chemically consistent treatment: we use input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations. Here we present the latest version of the galev evolutionary synthesis models that are now interactively available at http://www.galev.org. We review the currently used input physics, and also give details on how this physics is implemented in practice. We explain how to use the interactive web interface to generate models for user-defined parameters and also give a range of applications that can be studied using galev, ranging from star clusters, undisturbed galaxies of various types E–Sd to starburst and dwarf galaxies, both in the local and the high-redshift Universe.Peer reviewe

    Galaxy Evolution and the Redshift Desert

    Get PDF
    This thesis explores the evolution of galaxies from the onset of star formation shortly after the Big Bang until the present day. Particular emphasis lies on the redshift range z = 1.4 2.5, the so-called “redshift desert”, as it coincides with the peak epoch of cosmic star formation activity and mass assembly. Most of the information about galaxies and their evolution arrives in the form of their integrated light, i.e. the conglomeration of light emitted by stars of various ages and metallicities. In order to interpret the observed spectra and magnitudes, and to extract the physical parameters we therefore require models. This holds true in particular for galaxies too faint to target them spectroscopically, and for which redshifts and physical parameters derived from only their photometry is the only feasible way to study them in more detail. This thesis is concerned with such models, and describes how GALEV evolutionary synthesis models describe the spectral and chemical evolution of galaxies, accounting for gaseous emission and the increasing initial abundances of successive stellar generations, how they compare to observations and what we can learn from their application. Based on a large model grid, covering all observed galaxy evolution stages, I find that sub-solar metallicities have significant impact on the spectra of galaxies, and can lead to systematic errors and biases if not accounted for. A comparison of models with different metallicities furthermore reveals that photometric redshifts are also systematically biased if sub-solar metallicities are not properly accounted for. I also note that even a small mass-fractions of young stars can dominate the overall spectrum, leading to a large underestimation of the mass and age of the stellar population. The models explain not only the colour evolution of galaxies observed at a range of redshifts, but also their physical parameters. I show that with magnitudes in only a few bands we can successfully explain not only the masses of galaxies, but also their star formation rates and, where available from observations, their metallicities. If additional data are available, the grid of models can be used to refine colour selection criteria and to break degeneracies, e.g. between dust-reddened actively star-forming galaxies and intrinsically old, passively evolving galaxies. Using GAZELLE, a photometric redshift code that is purpose-tailored to harmonise with these models, I can extract accurate redshifts and a wealth of physical parameters from the largest ever sample of observed multi-wavelength photometry of galaxies. I then compare our findings with semi-analytical models that trace the evolution of individual galaxies based on cosmological simulations. In my sample I find a significant population of high-mass galaxies that is not accounted for by this class of models. Furthermore a small percentage of massive, yet starforming galaxies challenges our idea on how these galaxies form and evolve. In an appendix to this thesis I present a complementary approach to reconstruct the evolution of galaxies, using star clusters as tracers. I introduce a new technique to break the age-metallicity degeneracy and obtain individual ages and metallicities for a sample of globular clusters, revealing a merger of two Sb/Sc-type spirals 2 Gyrs ago in NGC 4570, a lenticular galaxy in the Virgo cluster. Also in the appendix I show that, at least in the studied galaxy Arp 78, the initial mass function conforms with our assumptions and does not change in low-density environments as recently predicted. Although studies of galaxy evolution are a major field in astronomy, there is still a lot more to be done to reveal the inner workings of these island universes, and this thesis also addresses how to continue and improve the work presented herein
    corecore