238 research outputs found

    Matrix Product Eigenstates for One-Dimensional Stochastic Models and Quantum Spin Chains

    Full text link
    We show that all zero energy eigenstates of an arbitrary mm--state quantum spin chain Hamiltonian with nearest neighbor interaction in the bulk and single site boundary terms, which can also describe the dynamics of stochastic models, can be written as matrix product states. This means that the weights in these states can be expressed as expectation values in a Fock representation of an algebra generated by 2m2m operators fulfilling m2m^2 quadratic relations which are defined by the Hamiltonian.Comment: 11 pages, Late

    Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin

    Get PDF
    The abundant flavonoid aglycone, naringenin, which is responsible for the bitter taste in grapefruits, has been shown to possess hypolipidemic and anti-inflammatory effects both in vitro and in vivo. Recently, our group demonstrated that naringenin inhibits hepatitis C virus (HCV) production, while others demonstrated its potential in the treatment of hyperlipidemia and diabetes. However, naringenin suffers from low oral bioavailability critically limiting its clinical potential. In this study, we demonstrate that the solubility of naringenin is enhanced by complexation with β-cyclodextrin, an FDA approved excipient. Hydroxypropoyl-β-cyclodextrin (HPβCD), specifically, increased the solubility of naringenin by over 400-fold, and its transport across a Caco-2 model of the gut epithelium by 11-fold. Complexation of naringenin with HPβCD increased its plasma concentrations when fed to rats, with AUC values increasing by 7.4-fold and Cmax increasing 14.6-fold. Moreover, when the complex was administered just prior to a meal it decreased VLDL levels by 42% and increased the rate of glucose clearance by 64% compared to naringenin alone. These effects correlated with increased expression of the PPAR co-activator, PGC1α in both liver and skeletal muscle. Histology and blood chemistry analysis indicated this route of administration was not associated with damage to the intestine, kidney, or liver. These results suggest that the complexation of naringenin with HPβCD is a viable option for the oral delivery of naringenin as a therapeutic entity with applications in the treatment of dyslipidemia, diabetes, and HCV infection.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (K01DK080241)Harvard Clinical Nutrition Research Center (P30-DK040561)European Research Council (Starting Grant (TMIHCV 242699))Massachusetts General Hospital (BioMEMS Resource Center (P41 EB-002503))Alexander Silberman Institute of Life Science

    A Pilot, Virtual Exercise Intervention Improves Health and Fitness during the COVID-19 Pandemic

    Get PDF
    International Journal of Exercise Science 15(7): 1395-1417, 2022. Physical activity levels are low in individuals with chronic disease (e.g., obesity) and have worsened during the COVID-19 pandemic. Purpose: Our pilot study tested a virtual exercise intervention for rural-dwelling adults with chronic disease from January-April 2021 for changes in mental health, physical fitness, and physical activity and for intervention fidelity. Methods: Participants (n = 8 [7 female]; age = 57.5 ± 13.8 years, body mass index = 38.2 ± 8.0 kg/m2) completed an exercise intervention led virtually by collegiate health science majors. Participants attended two 60-minute sessions/week for 12 weeks, completing individually-tailored and progressed aerobic and muscle-strengthening training. A non-randomized control group matched on gender and age continued normal activity during the 12 weeks. Changes in mental health, physical fitness, and physical activity measures were evaluated using a 2x2 (group x time) analysis of covariance. Results: Both groups improved mental health, but only intervention participants lost weight (3.1 ± 1.0 kg; no change in controls). Step test, arm curls, and chair stands improved by 16.1-20.6% in the intervention and 7.8-12.1% in the control groups. Intervention participants did not increase overall physical activity during or after the intervention. Intervention fidelity was high; participants attended ~73% of sessions and rated the sessions 4.7 ± 0.6 (out of 5). Researcher observations rated exercise sessions as meeting 12.7 ± 0.6 of 16 goals. Conclusions: Our virtual exercise program was associated with positive mental health and physical fitness changes. Such programs may provide a method, even beyond the pandemic, to improve fitness in adults with chronic disease

    A genome-wide association study of anorexia nervosa.

    Get PDF
    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field

    Implementation of Epigenetic Variation in Sorghum Selection and Implications for Crop Resilience Breeding

    Get PDF
    Crop resilience and yield stability are complex traits essential for food security. Sorghum bicolor is an important grain crop that shows promise for its natural resilience to drought and potential for marginal land production. We have developed sorghum lines in the Tx430 genetic background suppressed for MSH1 expression as a means of inducing de novo epigenetic variation, and have used these materials to evaluate changes in plant growth vigor. Plant crossing and selection in two distinct environments revealed features of phenotypic plasticity derived from MSH1 manipulation. Introduction of an epigenetic variation to an isogenic sorghum population, in the absence of selection, resulted in 10% yield increase under ideal field conditions and 20% increase under extreme low nitrogen conditions. However, incorporation of early-stage selection amplified these outcomes to 36% yield increase under ideal conditions and 64% increase under marginal field conditions. Interestingly, the best outcomes were derived by selecting mid-range performance early-generation lines rather than highest performing. Data also suggested that phenotypic plasticity derived from the epigenetic variation was nonuniform in its response to environmental variability but served to reduce genotype x environment interaction. The MSH1-derived growth vigor appeared to be associated with enhanced seedling root growth and altered expression of auxin response pathways, and plants showed evidence of cold tolerance, features consistent with observations made previously in Arabidopsis. These data imply that the MSH1 system is conserved across plant species, pointing to the value of parallel model plant studies to help devise effective plant selection strategies for epigenetic breeding in multiple crops

    Stabilization of a miniprotein fold by an unpuckered proline surrogate

    Get PDF
    The unique role of proline in modulating protein folding and recognition makes it an attractive target for substitution to generate new proteomimetics. The design, synthesis, and conformational analysis of non-canonical surrogates can also aid in parsing the role of prolyl stereoelectronic effects on structure. We recently described the synthesis and conformational analysis of dehydro-δ-azaproline (ΔaPro), a novel unsaturated analogue of proline featuring a planar dehydropyrazine ring. When incorporated into host sequences, this backbone N-aminated proline surrogate forms an acylhydrazone bond with an unusually high trans rotamer bias and low isomerization barrier. Here, we used CD, NMR spectroscopy, and MD simulations to evaluate the impact of ΔaPro substitution within the polyproline II (PPII) and loop regions of the avian pancreatic polypeptide (aPP). The ΔaPro residue strongly favors PPII conformation and stabilizes the aPP tertiary fold when incorporated at select positions within the miniprotein. A variant featuring three ΔaPro substitutions was found to significantly enhance the thermal stability of wild-type aPP despite compromising protein dimerization. Our results suggest that the stability of proline-rich folds relies more on backbone torsional preferences than ring puckering and informs strategies for the incorporation of ΔaPro into thermally stable and functional proteomimetics

    Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice

    Get PDF
    Increasing the expression of Hsp70 (heat-shock protein 70) can inhibit sensory neuron degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy) is associated with the gradual decline of sensory neuron function, we evaluated whether increasing Hsp70 was sufficient to improve several indices of neuronal function. Hsp90 is the master regulator of the heat-shock response and its inhibition can up-regulate Hsp70. KU-32 (N-{7-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyl-tetrahydro-2H-pyran-2-yloxy]-8-methyl-2-oxo-2H-chromen-3-yl}acetamide) was developed as a novel, novobiocin-based, C-terminal inhibitor of Hsp90 whose ability to increase Hsp70 expression is linked to the presence of an acetamide substitution of the prenylated benzamide moiety of novobiocin. KU-32 protected against glucose-induced death of embryonic DRG (dorsal root ganglia) neurons cultured for 3 days in vitro. Similarly, KU-32 significantly decreased neuregulin 1-induced degeneration of myelinated Schwann cell DRG neuron co-cultures prepared from WT (wild-type) mice. This protection was lost if the co-cultures were prepared from Hsp70.1 and Hsp70.3 KO (knockout) mice. KU-32 is readily bioavailable and was administered once a week for 6 weeks at a dose of 20 mg/kg to WT and Hsp70 KO mice that had been rendered diabetic with streptozotocin for 12 weeks. After 12 weeks of diabetes, both WT and Hsp70 KO mice developed deficits in NCV (nerve conduction velocity) and a sensory hypoalgesia. Although KU-32 did not improve glucose levels, HbA1c (glycated haemoglobin) or insulin levels, it reversed the NCV and sensory deficits in WT but not Hsp70 KO mice. These studies provide the first evidence that targeting molecular chaperones reverses the sensory hypoalgesia associated with DPN.This work was supported by grants from the Juvenile Diabetes Research Foundation and the National Institutes of Health [NS054847 and DK073594] (to R.T.D.) and [CA120458 and CA109265] (to B.S.J.B.)

    Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells

    Get PDF
    Background: The molecular chaperone, heat shock protein 90 (Hsp90) has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR) has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells. Methods: PC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography) to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies. Results: KU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model. Conclusions: Overall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer
    corecore