321 research outputs found

    Simulations of dense granular flow: Dynamic Arches and Spin Organization

    Full text link
    We present a numerical model for a two dimensional (2D) granular assembly, falling in a rectangular container when the bottom is removed. We observe the occurrence of cracks splitting the initial pile into pieces, like in experiments. We study in detail various mechanisms connected to the `discontinuous decompaction' of this granular material. In particular, we focus on the history of one single long range crack, from its origin at one side wall, until it breaks the assembly into two pieces. This event is correlated to an increase in the number of collisions, i.e. strong pressure, and to a momentum wave originated by one particle. Eventually, strong friction reduces the falling velocity such that the crack may open below the slow, high pressure `dynamic arch'. Furthermore, we report the presence of large, organized structures of the particles' angular velocities in the dense parts of the granulate when the number of collisions is large.Comment: Submitted to J. Phys.

    Simulations of Pattern Formation in Vibrated Granular Media

    Get PDF
    We present simulations of peak pattern formation in vibrated two-dimensional (2D) granulates and measure the dispersion relation of the pattern for various frequencies, accelerations, cell sizes, and layer heights. We report the first quantitative data from numerical simulations showing an interesting dependence of the pattern wavelength on the acceleration and the system size. Our results are related to recent experimental findings and theoretical predictions for gravity waves.Comment: 6 pages PS-file including figures, (version accepted at Europhys. Lett. 26.10.96

    Stationary shear flows of dense granular materials : a tentative continuum modelling

    Full text link
    We propose a simple continuum model to interpret the shearing motion of dense, dry and cohesion-less granular media. Compressibility, dilatancy and Coulomb-like friction are the three basic ingredients. The granular stress is split into a rate-dependent part representing the rebound-less impacts between grains and a rate-independent part associated with long-lived contacts. Because we consider stationary flows only, the grain compaction and the grain velocity are the two main variables. The predicted velocity and compaction profiles are in apparent agreement with the experimental or numerical results concerning free-surface shear flows as well as confined shear flow

    Granular Flows in a Rotating Drum: the Scaling Law between Velocity and Thickness of the Flow

    Full text link
    The flow of dry granular material in a half-filled rotating drum is studied. The thickness of the flowing zone is measured for several rotation speeds, drum sizes and beads sizes (size ratio between drum and beads ranging from 47 to 7400). Varying the rotation speed, a scaling law linking mean velocity vs thickness of the flow, vhmv\sim h^m, is deduced for each couple (beads, drum). The obtained exponent mm is not always equal to 1, value previously reported in a drum, but varies with the geometry of the system. For small size ratios, exponents higher than 1 are obtained due to a saturation of the flowing zone thickness. The exponent of the power law decreases with the size ratio, leading to exponents lower than 1 for high size ratios. These exponents imply that the velocity gradient of a dry granular flow in a rotating drum is not constant. More fundamentally, these results show that the flow of a granular material in a rotating drum is very sensible to the geometry, and that the deduction of the ``rheology'' of a granular medium flowing in such a geometry is not obvious

    A 2-D asymmetric exclusion model for granular flows

    Full text link
    A 2-D version of the asymmetric exclusion model for granular sheared flows is presented. The velocity profile exhibits two qualitatively different behaviors, dependent on control parameters. For low friction, the velocity profile follows an exponential decay while for large friction the profile is more accurately represented by a Gaussian law. The phase transition occurring between these two behavior is identified by the appearance of correlations in the cluster size distribution. Finally, a mean--field theory gives qualitative and quantitative good agreement with the numerical results.Comment: 13 pages, 5 figures; typos added, one definition change

    Surface flows of granular materials: A short introduction to some recent models

    Full text link
    We present a short review of recent theoretical descriptions of flows occuring at the surface of granular piles, and focus mainly on two models: the phenomenological ``BCRE'' model and the hydrodynamic model, based on Saint-Venant equations. Both models distinguish a ``static phase'' and a ``rolling'' phase inside the granular packing and write coupled equations for the evolutions of the height of each of these phases, which prove similar in both approaches. The BCRE description provides a very intuitive picture of the flow, whereas the Saint-Venant hydrodynamic description establishes a general and rigorous framework for granular flow studies.Comment: 10 pages, 3 figures, published in a special issue of C. R. Physique (Paris) on granular matte

    Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag

    Full text link
    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle and the downstream distance x of the flow. At high inclination angles the flow does not reach an x-invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gas-like phase.Comment: 10 pages, 16 figures, accepted to Phys. Rev.

    Solid-fluid transition in a granular shear flow

    Get PDF
    The rheology of a granular shear flow is studied in a quasi-2d rotating cylinder. Measurements are carried out near the midpoint along the length of the surface flowing layer where the flow is steady and non-accelerating. Streakline photography and image analysis are used to obtain particle velocities and positions. Different particle sizes and rotational speeds are considered. We find a sharp transition in the apparent viscosity (η\eta) variation with rms velocity (uu). In the fluid-like region above the depth corresponding to the transition point (higher rms velocities) there is a rapid increase in viscosity with decreasing rms velocity. Below the transition depth we find ηu1.5\eta \propto u^{-1.5} for all the different cases studied and the material approaches an amorphous solid-like state deep in the layer. The velocity distribution is Maxwellian above the transition point and a Poisson velocity distribution is obtained deep in the layer. The observed transition appears to be analogous to a glass transition.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Exact Solutions of a Model for Granular Avalanches

    Full text link
    We present exact solutions of the non-linear {\sc bcre} model for granular avalanches without diffusion. We assume a generic sandpile profile consisting of two regions of constant but different slope. Our solution is constructed in terms of characteristic curves from which several novel predictions for experiments on avalanches are deduced: Analytical results are given for the shock condition, shock coordinates, universal quantities at the shock, slope relaxation at large times, velocities of the active region and of the sandpile profile.Comment: 7 pages, 2 figure

    On dense granular flows

    Get PDF
    The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has been the subject of many experiments and discrete particle simulations. This paper is a collective work carried out among the French research group GDR Milieux Divis\'es. It proceeds from the collection of results on steady uniform granular flows obtained by different groups in six different geometries both in experiments and numerical works. The goal is to achieve a coherent presentation of the relevant quantities to be measured i.e. flowing thresholds, kinematic profiles, effective friction, etc. First, a quantitative comparison between data coming from different experiments in the same geometry enforces the robust features in each case. Second, a transversal analysis of the data across the different configurations, allows us to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations. The present work, more than a simple juxtaposition of results, underlines the richness of granular flows and enhances the open problem of defining a single rheologyComment: collectif paper written by the GdR Milieux divises (submitted the 12/12/03
    corecore