52 research outputs found

    Synthesis, Characterization, Spectroscopic, and Mesomorphic Studies of New Schiff Base Ligands and Titanium, Cobalt, Nickel and Copper Metal Centers

    Get PDF
    Transition metal complexes with Schiff base ligands offer a wide application in the field of development of catalysis and material. The straightforward synthesis allowed the structural modification and helped to optimize in various application of such complexes. Titanium-containing complexes have been reported to be important for their catalytic and material applications through the coordination of a tetradentate Schiff base ligand, viz. N, N’-ethylene bis(salicylideneiminate) dianion (salen). Studies reporting the characterization of achiral titanium(IV) salen complexes are scarce due to their intricate nature. Such complexes would be comparatively less expensive and easier to prepare synthetically and thus could represent an excellent alternative to the more expensive chiral titanium(IV) complexes. Our research group designed a series of octahedral titanium(IV) Schiff base complexes along with various substituted phenols as ligands, which were assessed for their purity and characterized using various methods and spectroscopic techniques such as elemental analysis, electrochemistry, UV-visible, 1H, 13C, 19F, and 49Ti NMR and FTIR spectroscopies. From the elemental analysis data, the complexes were proposed to have the general structural formula [Ti(salen)OPh-X)2] (where X = F, NO2 and CH3). The 49Ti-NMR spectral data showed chemical shifts in the range of +1160 ppm to +1170 ppm, which demonstrated that the magnetic environment showing an increase in the linewidth with molecular size for the particular titanium(IV) salen complex due to the presence of salen ligand. Another study was focused on the preparation of liquid crystal material using Schiff base ligand and the first-row transition metal ions. To exhibit the liquid crystal property, the design of the ligand plays a vital role. Herein, we used 2,4-dihydroxybenzaldehyde to prepare precursor ligand, at the reactive para-position, the alkoxybenzyl attached to generate precursor aldehyde. Ortho-phenylenediamine was used to create novel tetradentate rigid core ligand with flexible alkoxy side chains. These ligands coordinate with Co(II), Ni(II), and Cu(II) metal ions resulting in square planar Schiff base complexes. This thesis is focused on the preparation of stable, pure, and well characterized liquid crystal complexes. Various methods were explored, optimizing the yield and purity. Mesomorphic behavior of the complexes was explored optically, thermally, and by using XRD techniques

    Novel Survivin Inhibitor for Suppressing Pancreatic Cancer Cells Growth via Downregulating Sp1 and Sp3 Transciption Factors

    Get PDF
    Background/Aims: Targeting survivin, an anti-apoptotic protein and mitotic regulator, is considered as an effective therapeutic option for pancreatic cancer (PaCa). Tolfenamic acid (TA) showed anti-cancer activity in pre-clinical studies. A recent discovery demonstrated a copper(II) complex of TA (Cu-TA) can result in higher activity. In this study, the ability of Cu-TA to inhibit survivin and its transcription factors, Specificity protein (Sp) 1 and 3 in PaCa cell lines and tumor growth in mouse xenograft model were evaluated. Methods: Cell growth inhibition was measured in MIA PaCa-2 and Panc1 cells for 2 days using CellTiter-Glo kit. Sp1, Sp3 and survivin expression (by Western blot and qPCR), apoptotic cells and cell cycle phase distribution (by flow cytometry) were evaluated. A pilot study was performed using athymic nude mice [treated with vehicle/Cu-TA (25 or 50 mg/kg) 3 times/week for 4 weeks. Results: The IC50 value for Cu-TA was about half than TA. Both agents repressed the protein expression of Sp1/Sp3/survivin, Cu-TA was more effective than TA. Especially effect on survivin inhibition was 5.2 (MIA PaCa-2) or 6.4 (Panc1) fold higher and mRNA expression of only survivin was decreased. Apoptotic cells increased with Cu-TA treatment in both cell lines, while Panc1 showed both effect on apoptosis and cell cycle (G2/M) arrest. Cu-TA decreased the tumor growth in mouse xenografts (25 mg/kg: 48%; 50 mg/kg: 68%). Additionally, there was no change observed in mice body weights, indicating no overt toxicity was occurring. Conclusion: These results show that Cu-TA can serve as an effective survivin inhibitor for inhibiting PaCa cell growth

    Unique Features of Alarmone Metabolism in \u3ci\u3eClostridioides difficile\u3c/i\u3e

    Get PDF
    The “magic spot” alarmones (pp)pGpp, previously implicated in Clostridioides difficile antibiotic survival, are synthesized by the RelA-SpoT homolog (RSH) of C. difficile (RSHCd) and RelQCd. These enzymes are transcriptionally activated by diverse environmental stresses. RSHCd has previously been reported to synthesize ppGpp, but in this study, we found that both clostridial enzymes exclusively synthesize pGpp. While direct synthesis of pGpp from a GMP substrate, and (p)ppGpp hydrolysis into pGpp by NUDIX hydrolases, have previously been reported, there is no precedent for a bacterium synthesizing pGpp exclusively. Hydrolysis of the 5′ phosphate or pyrophosphate from GDP or GTP substrates is necessary for activity by the clostridial enzymes, neither of which can utilize GMP as a substrate. Both enzymes are remarkably insensitive to the size of their metal ion cofactor, tolerating a broad array of metals that do not allow activity in (pp)pGpp synthetases from other organisms. It is clear that while C. difficile utilizes alarmone signaling, its mechanisms of alarmone synthesis are not directly homologous to those in more completely characterized organisms

    Novel Survivin Inhibitor for Suppressing Pancreatic Cancer Cells Growth via Downregulating Sp1 and Sp3 Transcription Factors

    Get PDF
    Background/Aims: Targeting survivin, an anti-apoptotic protein and mitotic regulator, is considered as an effective therapeutic option for pancreatic cancer (PaCa). Tolfenamic acid (TA) showed anti-cancer activity in pre-clinical studies. A recent discovery demonstrated a copper(II) complex of TA (Cu-TA) can result in higher activity. In this study, the ability of Cu-TA to inhibit survivin and its transcription factors, Specificity protein (Sp) 1 and 3 in PaCa cell lines and tumor growth in mouse xenograft model were evaluated. Methods: Cell growth inhibition was measured in MIA PaCa-2 and Panc1 cells for 2 days using CellTiter-Glo kit. Sp1, Sp3 and survivin expression (by Western blot and qPCR), apoptotic cells and cell cycle phase distribution (by flow cytometry) were evaluated. A pilot study was performed using athymic nude mice [treated with vehicle/Cu-TA (25 or 50 mg/kg) 3 times/week for 4 weeks. Results: The IC50 value for Cu-TA was about half than TA.Both agents repressed the protein expression of Sp1/Sp3/survivin, Cu-TA was more effective than TA. Especially effect on survivin inhibition was 5.2 (MIA PaCa-2) or 6.4 (Panc1) fold higher and mRNA expression of only survivin was decreased. Apoptotic cells increased with Cu-TA treatment in both cell lines, while Panc1 showed both effect on apoptosis and cell cycle (G2/M) arrest. Cu-TA decreased the tumor growth in mouse xenografts (25 mg/kg: 48%; 50 mg/kg: 68%). Additionally, there was no change observed in mice body weights, indicating no overt toxicity was occurring. Conclusion: These results show that Cu-TA can serve as an effective survivin inhibitor for inhibiting PaCa cell growth

    Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand

    Get PDF
    In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)(OCO)]Cl·6HO 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)(OCO)]Cl·6HO 2 was used to produce anhydrous [Co(phen)(HO)](NO)3. Subsequently, anhydrous [Co(phen)(HO)](NO)3 was reacted with MeATSC 1 to produce [Co(phen)(MeATSC)](NO)·1.5HO·CHOH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV-visible, and multinuclear NMR (H, C, and Co) spectroscopy, along with HRMS, and conductivity measurements, where appropriate. Interactions of MeATSC 1 and complex 4 with calf thymus DNA (ctDNA) were investigated by carrying out UV-visible spectrophotometric studies. UV-visible spectrophotometric studies revealed weak interactions between ctDNA and the analytes, MeATSC 1 and complex 4 (K = 8.1 × 10 and 1.6 × 10 M, respectively). Topoisomerase inhibition assays and cleavage studies proved that complex 4 was an efficient catalytic inhibitor of human topoisomerases I and IIα. Based upon the results obtained from the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on 4T1-luc metastatic mammary breast cancer cells (IC = 34.4 ± 5.2 μM when compared to IC = 13.75 ± 1.08 μM for the control, cisplatin), further investigations into the molecular events initiated by exposure to complex 4 were investigated. Studies have shown that complex 4 activated both the apoptotic and autophagic signaling pathways in addition to causing dissipation of the mitochondrial membrane potential (ΔΨ). Furthermore, activation of cysteine-aspartic proteases3 (caspase 3) in a time- and concentration-dependent manner coupled with the ΔΨ, studies implicated the intrinsic apoptotic pathway as the major regulator of cell death mechanism

    Variation in grain zinc and iron concentrations, grain yield and associated traits of biofortified bread wheat genotypes in Nepal

    Get PDF
    Wheat (Triticum aestivum L.) is one of the major staples in Nepal providing the bulk of food calories and at least 30% of Fe and Zn intake and 20% of dietary energy and protein consumption; thus, it is essential to improve its nutritional quality. To select high-yielding genotypes with elevated grain zinc and iron concentration, the sixth, seventh, eighth, and ninth HarvestPlus Yield Trials (HPYTs) were conducted across diverse locations in Nepal for four consecutive years: 2015–16, 2016–17, 2017–18, and 2018–19, using 47 biofortified and 3 non-biofortified CIMMYT-bred, bread wheat genotypes: Baj#1, Kachu#1, and WK1204 (local check). Genotypic and spatial variations were found in agro-morphological traits; grain yield and its components; and the grain zinc and iron concentration of tested genotypes. Grain zinc concentration was highest in Khumaltar and lowest in Kabre. Likewise, grain iron concentration was highest in Doti and lowest in Surkhet. Most of the biofortified genotypes were superior for grain yield and for grain zinc and iron concentration to the non-biofortified checks. Combined analyses across environments showed moderate to high heritability for both Zn (0.48–0.81) and Fe (0.46–0.79) except a low heritability for Fe observed for 7th HPYT (0.15). Grain yield was positively correlated with the number of tillers per m2, while negatively correlated with days to heading and maturity, grain iron, grain weight per spike, and thousand grain weight. The grain zinc and iron concentration were positively correlated, suggesting that the simultaneous improvement of both micronutrients is possible through wheat breeding. Extensive testing of CIMMYT derived high Zn wheat lines in Nepal led to the release of five biofortified wheat varieties in 2020 with superior yield, better disease resistance, and 30–40% increased grain Zn and adaptable to a range of wheat growing regions in the country – from the hotter lowland, or Terai, regions to the dry mid- and high-elevation areas

    How to reduce household costs for people with tuberculosis : a longitudinal costing survey in Nepal

    Get PDF
    The aim of this study was to compare costs and socio-economic impact of tuberculosis (TB) for patients diagnosed through active (ACF) and passive case finding (PCF) in Nepal. A longitudinal costing survey was conducted in four districts of Nepal from April 2018 to October 2019. Costs were collected using the WHO TB Patient Costs Survey at three time points: intensive phase of treatment, continuation phase of treatment and at treatment completion. Direct and indirect costs and socio-economic impact (poverty headcount, employment status and coping strategies) were evaluated throughout the treatment. Prevalence of catastrophic costs was estimated using the WHO threshold. Logistic regression and generalized estimating equation were used to evaluate risk of incurring high costs, catastrophic costs and socio-economic impact of TB over time. A total of 111 ACF and 110 PCF patients were included. ACF patients were more likely to have no education (75% vs 57%, P = 0.006) and informal employment (42% vs 24%, P = 0.005) Compared with the PCF group, ACF patients incurred lower costs during the pretreatment period (mean total cost: US55vsUS55 vs US87, P < 0.001) and during the pretreatment plus treatment periods (mean total direct costs: US72vsUS72 vs US101, P < 0.001). Socio-economic impact was severe for both groups throughout the whole treatment, with 32% of households incurring catastrophic costs. Catastrophic costs were associated with ‘no education’ status [odds ratio = 2.53(95% confidence interval = 1.16–5.50)]. There is a severe and sustained socio-economic impact of TB on affected households in Nepal. The community-based ACF approach mitigated costs and reached the most vulnerable patients. Alongside ACF, social protection policies must be extended to achieve the zero catastrophic costs milestone of the End TB strategy

    Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia

    Get PDF
    The Indo-Gangetic aquifer is one of the world’s most important transboundary water resources, and the most heavily exploited aquifer in the world. To better understand the aquifer system, typologies have been characterized for the aquifer, which integrate existing datasets across the Indo-Gangetic catchment basin at a transboundary scale for the first time, and provide an alternative conceptualization of this aquifer system. Traditionally considered and mapped as a single homogenous aquifer of comparable aquifer properties and groundwater resource at a transboundary scale, the typologies illuminate significant spatial differences in recharge, permeability, storage, and groundwater chemistry across the aquifer system at this transboundary scale. These changes are shown to be systematic, concurrent with large-scale changes in sedimentology of the Pleistocene and Holocene alluvial aquifer, climate, and recent irrigation practices. Seven typologies of the aquifer are presented, each having a distinct set of challenges and opportunities for groundwater development and a different resilience to abstraction and climate change. The seven typologies are: (1) the piedmont margin, (2) the Upper Indus and Upper-Mid Ganges, (3) the Lower Ganges and Mid Brahmaputra, (4) the fluvially influenced deltaic area of the Bengal Basin, (5) the Middle Indus and Upper Ganges, (6) the Lower Indus, and (7) the marine-influenced deltaic areas

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
    corecore