84 research outputs found

    Controlling cooperation and recovery in nested transactions

    Full text link
    Recovery is a hard problem in environments where transactions perform work in a cooperative style (e.g., design environments). We propose concepts to control cooperation and recovery within nested transaction hierarchies. By allowing different nodes to run different protocols, we can build so-called recovery spheres with well-defined properties. We characterize those properties and illustrate them by examples from design environments.<br/

    Transparency of information disclosure in banks’ financial repors

    Get PDF
    Research topicality. The annual report, including the annual financial statements, is a key for any commercial bank to meet its accountability obligations. These statements reveal the results of the bank’s activities on its balance sheet as well as the use of resources at its disposal

    Quantification of bacterial mRNA involved in degradation of 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 from liquid culture and from river sediment by reverse transcriptase PCR (RT/PCR)

    Get PDF
    Competitive reverse transcriptase polymerase chain reaction (RT/PCR) was used to quantify the mRNA of the tcbC gene of Pseudomonas sp. strain P51. The tcbC gene encodes the enzyme chlorocatechol-1,2-dioxygenase involved in 1,2,4-trichlorobenzene (TCB) degradation. The mRNA content per cell was monitored in a batch culture growing on 1,2,4-TCB. No mRNA could be detected in the first 2 days of the lag phase. mRNA production became maximal with 20 molecules per cell in the early exponential growth phase but then decreased to less than 10 molecules per cell. When TCB was depleted and the cells entered the stationary phase, the mRNA content decreased slowly below the detection limit within 4 days. In order to compare detection of tcbC mRNA in pure culture and in river sediment, cells of strain P51 pregrown on TCB were added to sediment and RNAs extracted. In sediment samples containing 5×108 cells per gram the tcbC mRNA was quantifiable by RT/PCR. The mRNA recovery was about 3% as compared to the inoculum. The detection limit of the RT/PCR method was about 107 mRNA molecules per gram sediment or 106 copies per ml culture medium which corresponded in our case to 105 molecules per reaction via

    Nanoparticles for Permeable reactive barriers: Production and application of mobile particles

    Get PDF
    Permeable reactive barriers have been recognized as a cost-effective technology for in-situ groundwater remediation. Placement of the barrier underground is the biggest challenge in this technology, consuming most of scientific and financial resources, so far. Injecting engineered nanoparticle suspensions to create a reactive barrier in soils has shown potential to overcome this challenge. Nanoparticles will deposit on aquifer sand, and then adsorb and/or react with groundwater contamination. Injection can be made using wellbores, thus reducing the costs of the barrier placement. However, nanoparticles have low mobility and are transformed (and thereby lose their capacity to react) in the close vicinity of the injection zone. We have designed and produced Goethite nanoparticles to adsorb heavy metals in contaminated groundwater. Our colloidal suspensions show high stability and mobility in different sediment types. Laboratory tests with aquifer materials and numerical simulations were combined in order to understand how different hydrological and hydrogeochemical parameters affect the particle mobility when injected in porous media. The final nanoparticles are stable over days, facilitating transport from the place of production to the injection sites, and therefore minimizing on-site modification. By adjusting the concentrations of the injected suspensions and the injection flowrates, a desired mass of nanoparticles can travel in aquifers without accumulating near the wellbore or clogging pores. For example, a radius of influence of 4 meter was achieved at an injection rate of 60l/min. At such scale, the number of drilling and completion activities are lowered and stable, cost-effective reactive barriers can be placed. We thus present an applicable technology for the creation of in situ adsorption barriers for heavy metals in groundwater

    Citrate influences microbial Fe hydroxide reduction via a dissolution-disaggregation mechanism

    Get PDF
    Microbial reduction of ferric iron is partly dependent on Fe hydroxide particle size. Nanosized Fe hydroxides greatly exceed the bioavailability of their counterparts larger than 1 μm. Citrate as a low molecular weight organic acid can likewise stabilize colloidal suspensions against aggregation by electrostatic repulsion but also increase Fe bioavailability by enhancing Fe hydroxide solubility. The aim of this study was to see whether adsorption of citrate onto surfaces of large ferrihydrite aggregates results in the formation of a stable colloidal suspension by electrostatic repulsion and how this effect influences microbial Fe reduction. Furthermore, we wanted to discriminate between citrate-mediated colloid stabilization out of larger aggregates and ferrihydrite dissolution and their influence on microbial Fe hydroxide reduction. Dissolution kinetics of ferrihydrite aggregates induced by different concentrations of citrate and humic acids were compared to microbial reduction kinetics with Geobacter sulfurreducens. Dynamic light scattering results showed the formation of a stable colloidal suspension and colloids with hydrodynamic diameters of 69 (± 37) to 165 (± 65) nm for molar citrate:Fe ratios of 0.1 to 0.5 and partial dissolution of ferrihydrite at citrate:Fe ratios ≥ 0.1. No dissolution or colloid stabilization was detected in the presence of humic acids. Adsorption of citrate, necessary for dissolution, reversed the surface charge and led to electrostatic repulsion between sub-aggregates of ferrihydrite and colloid stabilization when the citrate:Fe ratio was above a critical value (≤ 0.1). Lower ratios resulted in stronger ferrihydrite aggregation instead of formation of a stable colloidal suspension, owing to neutralization of the positive surface charge. At the same time, microbial ferrihydrite reduction increased from 0.029 to 0.184 mM h-1 indicating that colloids stabilized by citrate addition enhanced microbial Fe reduction. Modelling of abiotic dissolution kinetics revealed that colloid stabilization was most pronounced at citrate:Fe ratios of 0.1 – 0.5, whereas higher ratios led to enhanced dissolution of both colloidal and larger aggregated fractions. Mathematical simulation of the microbial reduction kinetics under consideration of partial dissolution and colloid stabilization showed that the bioaccessibility increases in the order large aggregates < stable colloids < Fe-citrate. These findings indicate that much of the organic acid driven mobilization of Fe oxy(hydr)oxides is most likely due to colloid formation and stabilization rather than solubilisation

    Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater

    Get PDF
    Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very heterogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concentrations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ± 266 nm diameter were injected at low pressure (< 0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 × 3 × 9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post-injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions.This work was supported by H2020 EU project “Reground” Grant Agreement N◦ 641768. (www.reground-project.eu/). The authors gratefully acknowledge the valuable contribution of Sofia Credaro, who assisted in the proofreading and language editing of the manuscript. The authors thank the constructive comments by two anonymous reviewers

    Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater

    Get PDF
    Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very het-erogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concen-trations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ±266 nm diameter were injected at low pressure (<0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 ×3 ×9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post- injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions

    Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment

    Get PDF
    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl) succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O-2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons

    Microbial Hotspots in Lithic Macrohabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert

    Get PDF
    The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rockenvironments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology

    A General Model for Event Specification in Active Database Management Systems

    No full text
    Active database systems have been developed for applications that need an automatic reaction in response to certain conditions being satisfied or certain events occurring. Events can be simple in nature or complex. Complex events can be built from simpler ones with the help of event operators of an event algebra. While numerous papers propose extensions of the set of event operators only very few address the foundations of the semantics of complex events. For this reason most proposals mix different concepts (aspects) of complex events and offer event operators as the only means to control their semantics. This leads to peculiarities as aspects are not handled uniformly by operators and have other semantics than expected or operators of different algebras which, on the first glance, look the same may have different semantics. We have developed a formal meta model for complex events. It splits up the semantics of complex events into elementary, essentially independent dimensions. The re..
    corecore