8 research outputs found

    Numerical simulations of channel response to riverine structures in Arkansas River

    Get PDF
    Proceedings of the Seventh International Conference on Hydroscience and Engineering, Philadelphia, PA, September 2006. http://hdl.handle.net/1860/732Numerical simulation of flows, sediment transport and river channel change in complex geometries of natural environment is a challenge to computational fluid dynamics (CFD). The difficulties include not only the discretization of the physical domain with a computational mesh, but also the capabilities of simulating the short and long term channel morphologic change in response to adjustment of hydraulic structures. Therefore, a robust numerical modeling system consisting of an efficient mesh generator and fluvial process simulator is needed. In this study, the response of the Arkansas River navigation channel to riverine structure modifications was simulated by using a hydrodynamic and sediment transport computational model, CCHE2D. The feasibility of deepening the channel using modified dike fields with more, higher and longer dikes was confirmed with this model. In addition, the new design of the dike fields was further improved by multiple simulations of the computational model

    Rheotaxis in Larval Zebrafish Is Mediated by Lateral Line Mechanosensory Hair Cells

    Get PDF
    The lateral line sensory system, found in fish and amphibians, is used in prey detection, predator avoidance and schooling behavior. This system includes cell clusters, called superficial neuromasts, located on the surface of head and trunk of developing larvae. Mechanosensory hair cells in the center of each neuromast respond to disturbances in the water and convey information to the brain via the lateral line ganglia. The convenient location of mechanosensory hair cells on the body surface has made the lateral line a valuable system in which to study hair cell damage and regeneration. One way to measure hair cell survival and recovery is to assay behaviors that depend on their function. We built a system in which orientation against constant water flow, positive rheotaxis, can be quantitatively assessed. We found that zebrafish larvae perform positive rheotaxis and that, similar to adult fish, larvae use both visual and lateral line input to perform this behavior. Disruption or damage of hair cells in the absence of vision leads to a marked decrease in rheotaxis that recovers upon hair cell repair or regeneration

    Zebrafish Endzone Regulates Neural Crest-Derived Chromatophore Differentiation and Morphology

    Get PDF
    The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology

    Neomycin-Induced Hair Cell Death and Rapid Regeneration in the Lateral Line of Zebrafish (Danio rerio)

    No full text
    Mechanoreceptive hair cells are extremely sensitive to aminoglycoside antibiotics, including neomycin. Hair cell survival was assessed in larval wild-type zebrafish lateral line neuromasts 4 h after initial exposure to a range of neomycin concentrations for 1 h. Each of the lateral line neuromasts was scored in live fish for the presence or absence of hair cells using the fluorescent vital dye DASPEI to selectively label hair cells. All neuromasts were devoid of DASPEI-labeled hair cells 4 h after 500 µM neomycin exposure. Vital DASPEI staining was proportional to the number of hair cells per neuromast identified in fixed larvae using immunocytochemistry for acetylated tubulin and phalloidin labeling. The time course of hair cell regeneration in the lateral line neuromasts was also analyzed following neomycin-induced damage. Regenerated hair cells were first observed using live DASPEI staining 12 and 24 h following neomycin treatment. The potential role of proliferation in regenerating hair cells was analyzed. A 1 h pulse-fix protocol using bromodeoxyuridine (BrdU) incorporation was used to identify S-phase cells in neuromasts. BrdU incorporation in neomycin-damaged neuromasts did not differ from control neuromasts 4 h after drug exposure but was dramatically upregulated after 12 h. The proliferative cells identified during a 1 h period at 12 h after neomycin treatment were able to give rise to new hair cells by 24–48 h after drug treatment. The results presented here provide a standardized preparation for studying and identifying genes that influence vertebrate hair cell death, survival, and regeneration following ototoxic insults

    The genome of the sea urchin Strongylocentrotus purpuratus.

    No full text
    International audienceWe report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes
    corecore