30 research outputs found

    Hemisphere-scale differences in conifer evolutionary dynamics

    Get PDF
    Fundamental differences in the distribution of oceans and landmasses in the Northern and Southern Hemispheres potentially impact patterns of biological diversity in the two areas. The evolutionary history of conifers provides an opportunity to explore these dynamics, because the majority of extant conifer species belong to lineages that have been broadly confined to the Northern or Southern Hemisphere during the Cenozoic. Incorporating genetic information with a critical review of fossil evidence, we developed an age-calibrated phylogeny sampling ∼80% of living conifer species. Most extant conifer species diverged recently during the Neogene within clades that generally were established during the later Mesozoic, but lineages that diversified mainly in the Southern Hemisphere show a significantly older distribution of divergence ages than their counterparts in the Northern Hemisphere. Our tree topology and divergence times also are best fit by diversification models in which Northern Hemisphere conifer lineages have higher rates of species turnover than Southern Hemisphere lineages. The abundance of recent divergences in northern clades may reflect complex patterns of migration and range shifts during climatic cycles over the later Neogene leading to elevated rates of speciation and extinction, whereas the scattered persistence of mild, wetter habitats in the Southern Hemisphere may have favored the survival of older lineages

    Data from: Genotyping-by-Sequencing for Populus Population Genomics: An Assessment of Genome Sampling Patterns and Filtering Approaches

    Get PDF
    Continuing advances in nucleotide sequencing technology are inspiring a suite of genomic approaches in studies of natural populations. Researchers are faced with data management and analytical scales that are increasing by orders of magnitude. With such dramatic advances comes a need to understand biases and error rates, which can be propagated and magnified in large-scale data acquisition and processing. Here we assess genomic sampling biases and the effects of various population-level data filtering strategies in a genotyping-by-sequencing (GBS) protocol. We focus on data from two species of Populus, because this genus has a relatively small genome and is emerging as a target for population genomic studies. We estimate the proportions and patterns of genomic sampling by examining the Populus trichocarpa genome (Nisqually-1), and demonstrate a pronounced bias towards coding regions when using the methylation-sensitive ApeKI restriction enzyme in this species. Using population-level data from a closely related species (P. tremuloides), we also investigate various approaches for filtering GBS data to retain high-depth, informative SNPs that can be used for population genetic analyses. We find a data filter that includes the designation of ambiguous alleles resulted in metrics of population structure and Hardy-Weinberg equilibrium that were most consistent with previous studies of the same populations based on other genetic markers. Analyses of the filtered data (27,910 SNPs) also resulted in patterns of heterozygosity and population structure similar to a previous study using microsatellites. Our application demonstrates that technically and analytically simple approaches can readily be developed for population genomics of natural populations

    Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree

    Get PDF
    Although the relationship of angiosperms to other seed plants remains controversial, great progress has been made in identifying the earliest extant splits in flowering-plant phylogeny, with the discovery that the New Caledonian shrub Amborella trichopoda, the water lilies (Nymphaeales), and the woody Austrobaileyales constitute a basal grade of lines that diverged before the main radiation in the clade. By focusing attention on these ancient lines, this finding has re-written our understanding of angiosperm structural and reproductive biology, physiology, ecology and taxonomy. The discovery of a new basal lineage would lead to further re-evaluation of the initial angiosperm radiation, but would also be unexpected, as nearly all of the ∼460 flowering-plant families have been surveyed in molecular studies. Here we show that Hydatellaceae, a small family of dwarf aquatics that were formerly interpreted as monocots, are instead a highly modified and previously unrecognized ancient lineage of angiosperms. Molecular phylogenetic analyses of multiple plastid genes and associated noncoding regions from the two genera of Hydatellaceae identify this overlooked family as the sister group of Nymphaeales. This surprising result is further corroborated by evidence from the nuclear gene phytochrome C (PHYC), and by numerous morphological characters. This indicates that water lilies are part of a larger lineage that evolved more extreme and diverse modifications for life in an aquatic habitat than previously recognized. ©2007 Nature Publishing Group

    Robust Inference of Monocot Deep Phylogeny Using an Expanded Multigene Plastid Data Set

    Get PDF
    We use multiple photosynthetic, chlororespiratory, and plastid translation apparatus loci and their associated noncoding regions (ca. 16 kb per taxon, prior to alignment) to make strongly supported inferences of the deep internal branches of monocot phylogeny. Most monocot relationships are robust (an average of ca. 91 % bootstrap support per branch examined), including those poorly supported or unresolved in other studies. Our data strongly support a sister-group relationship between Asparagales and the commelinid monocots, the inclusion of the orchids in Asparagales, and the status of Petrosaviaceae as the sister group of all monocots except Acorus and Alismatales. The latter finding supports recognition of the order Petrosaviales. Also strongly supported is a placement of Petermannia disjunct from Colchicaceae (Liliales) and a sister-group relationship between Commelinales and Zingiberales. We highlight the remaining weak areas of monocot phylogeny, including the positions of Dioscoreales, Liliales, and Pandanales. Despite substantial variation in the overall rate of molecular evolution among lineages, inferred amounts of change among codon-position data partitions are correlated with each other across the monocot tree, consistent with low incongruence between these partitions. Ceratophyllum and Chloranthaceae appear to have a destabilizing effect on the position of the monocots among other angiosperms; the issue of monocot placement in broader angiosperm phylogeny remains problematic

    Multigene Analyses of Monocot Relationships

    Get PDF
    We present an analysis of supra-familial relationships of monocots based on a combined matrix of nuclear I8S and partial 26S rDNA, plastid atpB, matK, ndhF, and rbcL, and mitochondrial atp1 DNA sequences. Results are highly congruent with previous analyses and provide higher bootstrap support for nearly all relationships than in previously published analyses. Important changes to the results of previous work are a well-supported position of Petrosaviaceae as sister to all monocots above Acorales and Alismatales and much higher support for the commelinid clade. For the first time, the spine of the monocot tree has some bootstrap support, although support for paraphyly of liliids is still only low to moderate (79-82%). Dioscoreales and Pandanales are sister taxa (moderately supported, 87- 92%), and Asparagales are weakly supported (79%) as sister to the commelinids. Analysis of just the four plastid genes reveals that addition of data from the other two genomes contributes to generally better support for most clades, particularly along the spine. A new collection reveals that previous material of Petermannia was misidentified, and now Petermanniaceae should no longer be considered a synonym of Colchicaceae. Arachnitis (Corsiaceae) falls into Liliales, but its exact position is not well supported. Sciaphila (Triuridaceae) falls with Pandanales. Trithuria (Hydatellaceae) falls in Poales near Eriocaulaceae, Mayacaceae, and Xyridaceae, but until a complete set of genes are produced for this taxon, its placement will remain problematic. Within the commelinid clade, Dasypogonaceae are sister to Poales and Arecales sister to the rest of the commelinids, but these relationships are only weakly supported

    Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF

    Get PDF
    We used ndhF sequence variation to reconstruct relationships across 282 taxa representing 78 monocot families and all 12 orders. The resulting tree is highly resolved and places commelinids sister to Asparagales, with both sister to Liliales—Pandanales in the strict consensus; Pandanales are sister to Dioscoreales in the bootstrap majority-rule tree, just above Petrosaviales. Acorales are sister to all other monocots, with Alismatales sister to all but Acorales. Relationships among the four major clades of commelinids remain unresolved. Relationships within orders are consistent with those based on rbcL, alone or in combination with atpB and 18S nrDNA, and generally better supported: ndhF contributes more than twice as many informative characters as rbcL, and nearly as many as rbcL, atpB, and 18S nrDNA combined. Based on functional arguments, we hypothesized that net venation and fleshy fruits should both evolve—and thus undergo concerted convergence—in shaded habitats, and revert to parallel venation and dry, passively dispersed fruits in open, sunny habitats. Our data show that net venation arose at least 26 times and disappeared 9 times, whereas fleshy fruits arose 22 times and disappeared 11 times. Both traits arose together at least 15 times and disappeared together 5 times. They thus show a highly significant pattern of concerted convergence (P \u3c 10-9) and are each even more strongly associated with shaded habitats (P \u3c 10-10 to 10-23); net venation is also associated, as predicted, with broad-leaved aquatic plants. Exceptions to this pattern illustrate the importance of other selective constraints and phylogenetic inertia

    Predasjon i norsk næringsliv : utfordringer ved kostnadsestimering.

    Get PDF
    Denne utredningen tar for seg utfordringer som oppstår ved beregning av kostnader i forbindelse med mistanke om utnyttelse av dominerende stilling i form av rovprising. Til dette formålet har jeg sett på hvilke regler som ligger til grunn for regulering av dominante aktører og jeg har sett på hovedelement fra kostnadsregnskapet som er nødvendig for utføre teste den norske lovgivningen krever i dag. Utfordringen som ligger i kostnadstestene har jeg belysts ved å se på kostnadsestimering i luftfarten

    Inference of higher-order conifer relationships from a multi-locus plastid data set

    No full text
    We reconstructed the broad backbone of conifer phylogeny from a survey of 15-17 plastid loci and associated noncoding regions from exemplar conifer species. Parsimony and likelihood analyses recover the same higher-order relationships, and we find stron

    Data from: Genotyping-by-sequencing for Populus population genomics: an assessment of genome sampling patterns and filtering approaches

    Get PDF
    Continuing advances in nucleotide sequencing technology are inspiring a suite of genomic approaches in studies of natural populations. Researchers are faced with data management and analytical scales that are increasing by orders of magnitude. With such dramatic advances comes a need to understand biases and error rates, which can be propagated and magnified in large-scale data acquisition and processing. Here we assess genomic sampling biases and the effects of various population-level data filtering strategies in a genotyping-by-sequencing (GBS) protocol. We focus on data from two species of Populus, because this genus has a relatively small genome and is emerging as a target for population genomic studies. We estimate the proportions and patterns of genomic sampling by examining the Populus trichocarpa genome (Nisqually-1), and demonstrate a pronounced bias towards coding regions when using the methylation-sensitive ApeKI restriction enzyme in this species. Using population-level data from a closely related species (P. tremuloides), we also investigate various approaches for filtering GBS data to retain high-depth, informative SNPs that can be used for population genetic analyses. We find a data filter that includes the designation of ambiguous alleles resulted in metrics of population structure and Hardy-Weinberg equilibrium that were most consistent with previous studies of the same populations based on other genetic markers. Analyses of the filtered data (27,910 SNPs) also resulted in patterns of heterozygosity and population structure similar to a previous study using microsatellites. Our application demonstrates that technically and analytically simple approaches can readily be developed for population genomics of natural populations
    corecore