774 research outputs found

    The magnetosome model: insights into the mechanisms of bacterial biomineralization.

    Get PDF
    Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aquatic bacteria that contains single-domain crystals of the iron oxide magnetite (Fe3O4) or the iron sulfide greigite (Fe3S4). Here, recent advances in our understanding of the mechanisms of bacterial magnetite biomineralization are discussed and used as a framework for understanding less-well studied examples, including the bacterial intracellular biomineralization of cadmium, selenium, silver, nickel, uranium, and calcium carbonate. Understanding the molecular mechanisms underlying the biological formation of these minerals will have important implications for technologies such as the fabrication of nanomaterials and the bioremediation of toxic compounds

    Systematic design of single-mode coupled-resonator optical waveguides in photonic crystals

    Get PDF
    By establishing a direct relation between the dispersion and the field profile of a coupled-resonator optical waveguide (CROW) and those of its constituent cavities, we present a systematic method for the design of a single-mode CROW and for control of its dispersion. The procedure includes the design of a single-mode cavity and control of its frequency by engineering its structure. Then, by chaining these cavities in the proper direction and at an appropriate distance, we achieve the desired dispersion for the CROW

    Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    Get PDF
    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR sites, including the impact of reservoir characterization uncertainty; understanding this uncertainty is critical in terms of economic decision making and the cost-effectiveness of CO2 storage through EOR.Comment: 9 pages, 6 figures, in press, Energy Procedia, 201

    A Genetic Strategy for Probing the Functional Diversity of Magnetosome Formation

    Get PDF
    Model genetic systems are invaluable, but limit us to understanding only a few organisms in detail, missing the variations in biological processes that are performed by related organisms. One such diverse process is the formation of magnetosome organelles by magnetotactic bacteria. Studies of model magnetotactic α-proteobacteria have demonstrated that magnetosomes are cubo-octahedral magnetite crystals that are synthesized within pre-existing membrane compartments derived from the inner membrane and orchestrated by a specific set of genes encoded within a genomic island. However, this model cannot explain all magnetosome formation, which is phenotypically and genetically diverse. For example, Desulfovibrio magneticus RS-1, a δ-proteobacterium for which we lack genetic tools, produces tooth-shaped magnetite crystals that may or may not be encased by a membrane with a magnetosome gene island that diverges significantly from those of the α-proteobacteria. To probe the functional diversity of magnetosome formation, we used modern sequencing technology to identify hits in RS-1 mutated with UV or chemical mutagens. We isolated and characterized mutant alleles of 10 magnetosome genes in RS-1, 7 of which are not found in the α-proteobacterial models. These findings have implications for our understanding of magnetosome formation in general and demonstrate the feasibility of applying a modern genetic approach to an organism for which classic genetic tools are not available

    Control of the replication initiator DnaA by an anti-cooperativity factor

    Get PDF
    Proper coordination of DNA replication with cell growth and division is critical for production of viable progeny. In bacteria, coordination of DNA replication with cell growth is generally achieved by controlling activity of the replication initiator DnaA and its access to the chromosomal origin of replication, oriC. Here we describe a previously unknown mechanism for regulation of DnaA. YabA, a negative regulator of replication initiation in Bacillus subtilis, interacts with DnaA and DnaN, the sliding (processivity) clamp of DNA polymerase. We found that in vivo, YabA associated with the oriC region in a DnaA-dependent manner and limited the amount of DnaA at oriC. In vitro, purified YabA altered binding of DnaA to DNA by inhibiting cooperativity. Although previously undescribed, proteins that directly inhibit cooperativity may be a common mechanism for regulating replication initiation. Conditions that cause release of DnaN from the replisome, or overproduction of DnaN, caused decreased association of YabA and increased association of DnaA with oriC. This effect of DnaN, either directly or indirectly, is likely responsible, in part, for enabling initiation of a new round of replication following completion of a previous round.United States. Public Health Service (grant GM41934)National Institutes of Health (U.S.) (NIH Kirschstein NRSA postdoctoral fellowship F32GM093408

    Extensional faulting on Tinos island, Aegean sea, Greece: How many detachments?

    Get PDF
    Zircon and apatite fission track (ZFT and AFT) and (U-Th)/He, 40Ar/39Ar hornblende, and U-Pb zircon ages from the granites of Tinos Island in the Aegean Sea, Greece, suggest, together with published ZFT data, that there are three extensional detachments on Tinos. The Tinos granites crosscut the Tinos detachment. Cooling of the granites was controlled by the Livadi detachment, which occurs structurally above the Tinos detachment. Our U-Pb zircon age is 14.6 ± 0.2 Ma and two 40Ar/39Ar hornblende ages are 14.4 ± 0.4 and 13.7 ± 0.4 Ma. ZFT and AFT ages go from 14.4 ± 1.2 to 12.2 ± 1.0 Ma and 12.8 ± 2.4 to 11.9 ± 2.0 Ma. (U-Th)/He ages are from 10.4 ± 0.2 to 9.9 ± 0.2 Ma (zircon) and 11.9 ± 0.5 to 10.0 ± 0.3 Ma (apatite). All ages decrease northeastward in the direction of hanging wall transport on the Livadi detachment and age-distance relationships yield a slip rate of 2.6 (+3.3 / −1.0) km Ma−1. This rate is smaller than a published slip rate of 6.5 km Ma−1 for the Vari detachment, which is another detachment structurally above the Tinos detachment. Because of the different rates and because published ZFT ages from the footwall of the Vari detachment are ∼10 Ma, we propose that the Vari detachment has to be distinguished from the older Livadi detachment. We discuss various models of how the extensional detachments may have evolved and prefer a scenario in which the Vari detachment cut down into the footwall of the Livadi detachment successively exhuming deeper structural units. The thermochronologic ages demonstrate the importance of quantitative data for constraining localization processes during extensional deformation
    • …
    corecore