177 research outputs found

    Influence of sow dietary polyunsaturated fatty acid source on the immunoglobulin profile of piglets

    Get PDF
    To examine the effect of different n-3 polyunsaturated fatty acid (PUFA) sources in sow diets on piglets’ immunoglobulin (Ig) profile, two groups of twelve sows each were fed different diets from day 45 of pregnancy and during lactation on two commercial farms. On farm I, a palm oil diet (25 g/kg; PALM) and a linseed oil containing diet (20 g/kg; LIN) were fed. On farm II, the same PALM diet and a fish oil containing diet (20 g/kg; FISH) were fed. All diets contained equal amounts of C18:2n-6 (13 g/kg). One day before parturition, blood (for serum) was taken and shortly after parturition, colostrum was taken from the sows (not from sows on farm I) for determination of Ig levels. On day 5 post partum and the day before weaning, blood (for serum) was taken from 4 piglets of six sows per group (24 piglets in total per group; for 5-d old piglets on farm II, only 6 piglets of the FISH group were sampled). In all samples total IgG, IgA, IgM concentration and specific F4-IgG, -IgA and -IgM titer (Log2 titer) against E. coli were determined. On farm I, the sows of the LIN group showed a trend towards lower IgG titers compared to the PALM group around farrowing (P<0.1). On farm II, the sows on the FISH diet showed a significantly (P<0.05) lower F4-IgG titer compared to the sows fed PALM. The colostrum samples on farm II showed no differences between both groups. On farm I, the 5-d old piglets from the LIN group had significantly higher IgA and IgM concentrations and higher F4-IgA and F4-IgM titers (P<0.05). F4-IgA and F4-IgG titers were also significantly higher at weaning in the LIN group compared to the PALM group. On farm II, the piglets of the FISH group had a significantly higher IgG concentration and F4-IgA titer (P<0.05) and a trend towards a higher IgM concentration (P<0.1) around weaning compared to the PALM group. It seems that fish oil in the maternal diet increases total IgG concentration, while linseed oil reduces total IgG and increases total IgA compared to a palm fat containing diet. Both fish and linseed oil seem to have a positive effect on total IgM concentration compared to the palm diet

    Cross-shelf transport, oxygen depletion, and nitrate release within a forming mesoscale eddy in the eastern Indian Ocean

    Get PDF
    International audienceMesoscale eddies may drive a significant component of cross-shelf transport important in the ecology of shelf ecosystems and adjacent boundary currents. The Leeuwin Current in the eastern Indian Ocean becomes unstable in the austral autumn triggering the formation of eddies. We hypothesized that eddy formation represented the major driver of cross-shelf transport during the autumn. Acoustic Doppler Current Profiler profiles confirmed periodic offshore movement of 2 Sv of shelf waters into the forming eddy from the shelf, carrying a load of organic particles (>0.06 mm). The gap between inflow and outflow then closed, such that the eddy became isolated from further direct input of shelf waters. Drifter tracks supported an anticyclonic surface flow peaking at the eddy perimeter and decreasing in velocity at the eddy center. Oxygen and nutrient profiles suggested rapid remineralization of nitrate mid-depth in the isolated water mass as it rotated, with a total drawdown of oxygen of 3.6 mol m 22 to 350 m. Depletion of oxygen, and release of nitrate, occurred on the timescale of 1 week. We suggest that N supply and N turnover are rapid in this system, such that nitrate is acting primarily as a regenerated nutrient rather than as a source of new nitrogen. We hypothesize that sources of eddy particulate C and N could include particles sourced from coastal primary producers within 500 km such as macrophytes and sea-grasses known to produce copious detritus, which is prone to resuspension and offshore transport

    Simultaneous Quantification of Active Carbon- and Nitrogen-Fixing Communities and Estimation of Fixation Rates Using Fluorescence In Situ Hybridization and Flow Cytometry

    Get PDF
    Understanding the interconnectivity of oceanic carbon and nitrogen cycles, specifically carbon and nitrogen fixation, is essential in elucidating the fate and distribution of carbon in the ocean. Traditional techniques measure either organism abundance or biochemical rates. As such, measurements are performed on separate samples and on different time scales. Here, we developed a method to simultaneously quantify organisms while estimating rates of fixation across time and space for both carbon and nitrogen. Tyramide signal amplification fluorescence in situ hybridization (TSA-FISH) of mRNA for functionally specific oligonucleotide probes for rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase; carbon fixation) and nifH (nitrogenase; nitrogen fixation) was combined with flow cytometry to measure abundance and estimate activity. Cultured samples representing a diversity of phytoplankton (cyanobacteria, coccolithophores, chlorophytes, diatoms, and dinoflagellates), as well as environmental samples from the open ocean (Gulf of Mexico, USA, and southeastern Indian Ocean, Australia) and an estuary (Galveston Bay, Texas, USA), were successfully hybridized. Strong correlations between positively tagged community abundance and 14C/15N measurements are presented. We propose that these methods can be used to estimate carbon and nitrogen fixation in environmental communities. The utilization of mRNA TSA-FISH to detect multiple active microbial functions within the same sample will offer increased understanding of important biogeochemical cycles in the ocean

    Production and ecosystem structure in cold‐core vs. warm‐core eddies: Implications for the zooplankton isoscape and rock lobster larvae

    Get PDF
    Anticyclonic (warm-core) mesoscale eddies (WCEs) in the Eastern Indian Ocean carry higher surface chlorophyll signatures than cyclonic (cold-core) eddies (CCEs). Paradoxically, WCEs host rock lobster larvae (phyllosomas) with lower lipid stores and protein reserves than phyllosomas in CCEs, suggesting a poorer nutritional status. We assess primary productivity and zooplankton isotopic data from eight eddies across four research voyages (2003–2011) to determine how this contradiction might occur. We find that WCEs and CCEs are equally productive per unit chlorophyll a, but depth-integrated primary production (PP) is greater in eddies with shallower mixed layers (MLs), especially in CCEs. MLs tend to be shallower in CCEs than in WCEs because the pycnocline is closer to the surface. This, in combination with stronger stratification in CCE euphotic zones than those of WCEs, supports greater flagellate and dinoflagellate populations in CCEs. These phytoplankton provide high-quality nutrition for zooplankton, which feed on average ~ 0.6 trophic level lower in CCEs with the shallowest MLs, accumulating high lipid stores. Conversely, WCEs have, on average, ~ 70 m deeper MLs than CCEs, and host a phytoplankton community with more diatoms. Diatoms provide lower quality food for zooplankton, and zooplankton lipid stores in WCEs decline with trophic level, and possibly, with time after initial (or seasonal) nutrient injection. As a result, phyllosomas in CCEs have higher energy and lipid content than those in warm-core eddies. The resolution of the paradox, therefore, is that the higher surface chlorophyll signatures of WCEs are not representative of the nutritional value of the prey field of the phyllosoma. We also conclude that interannual variations of mixed layer depth occur at a regional scale, controlling PP

    Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes

    Get PDF
    Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 Όm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts

    A Holistic Approach to Marine Eco-Systems Biology

    Get PDF
    With biology becoming quantitative, systems-level studies can now be performed at spatial scales ranging from molecules to ecosystems. Biological data generated consistently across scales can be integrated with physico-chemical contextual data for a truly holistic approach, with a profound impact on our understanding of life [1]–[5]. Marine ecosystems are crucial in the regulation of Earth's biogeochemical cycles and climate [6],[7]. Yet their organization, evolution, and dynamics remain poorly understood [8],[9]. The Tara Oceans project was launched in September 2009 for a 3-year study of the global ocean ecosystem aboard the ship Tara. A unique sampling programme encompassing optical and genomic methods to describe viruses, bacteria, archaea, protists, and metazoans in their physico-chemical environment has been implemented. Starting as a grassroots initiative of a few scientists, the project has grown into a global consortium of over 100 specialists from diverse disciplines, including oceanography, microbial ecology, genomics, molecular, cellular, and systems biology, taxonomy, bioinformatics, data management, and ecosystem modeling. This multidisciplinary community aims to generate systematic, open access datasets usable for probing the morphological and molecular makeup, diversity, evolution, ecology, and global impacts of plankton on the Earth system

    Open science resources for the discovery and analysis of Tara Oceans data

    Get PDF
    Le " Tara ExpĂ©ditions" organise des expĂ©ditions pour Ă©tudier et comprendre l'impact des changements climatiques sur nos ocĂ©ans.International audienceThe Tara Oceans expedition (2009–2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events
    • 

    corecore