281 research outputs found

    Recent research on V/STOL test limits at the University of Washington aeronautical laboratory

    Get PDF
    The occurence of flow breakdown during the wind tunnel testing of a powered V/STOL aircraft was studied. Flow breakdown is the low forward speed test limit in a solid wall wind tunnel and is characterized by a vortex which forms on the floor and walls of the wind tunnel thereby failing to simulate free air conditions. The flow is caused by the interaction of the model wake and tunnel boundary layer and affects the model's aerodynamic characteristics in such fashion as to negate their reliability as correctable wind tunnel data. The low speed test limit was examined using a model that possessed a discretely concentrated powered lift system using a pair of lift jets. The system design is discussed and the tests and results which show that flow breakdown occurs at a velocity ratio of approximately 0.20 are reported

    Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer

    No full text
    Tamoxifen is the standard-of-care treatment for estrogen receptor-positive premenopausal breast cancer. We examined tamoxifen metabolism via blood metabolite concentrations and germline variations of CYP3A5, CYP2C9, CYP2C19 and CYP2D6 in 587 premenopausal patients (Asians, Middle Eastern Arabs, Caucasian-UK; median age 39 years) and clinical outcome in 306 patients. N-desmethyltamoxifen (DM-Tam)/(Z)-endoxifen and CYP2D6 phenotype significantly correlated across ethnicities (R2: 53%, P<10?77). CYP2C19 and CYP2C9 correlated with norendoxifen and (Z)-4-hydroxytamoxifen concentrations, respectively (P<0.001). DM-Tam was influenced by body mass index (P<0.001). Improved distant relapse-free survival (DRFS) was associated with decreasing DM-Tam/(Z)-endoxifen (P=0.036) and increasing CYP2D6 activity score (hazard ratio (HR)=0.62; 95% confidence interval (CI), 0.43–0.91; P=0.013). Low (<14?nM) compared with high (>35?nM) endoxifen concentrations were associated with shorter DRFS (univariate P=0.03; multivariate HR=1.94; 95% CI, 1.04–4.14; P=0.064). Our data indicate that endoxifen formation in premenopausal women depends on CYP2D6 irrespective of ethnicity. Low endoxifen concentration/formation and decreased CYP2D6 activity predict shorter DRFS

    ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells through Two MicroRNAs in Arabidopsis

    Get PDF
    Stem cells are crucial in morphogenesis in plants and animals. Much is known about the mechanisms that maintain stem cell fates or trigger their terminal differentiation. However, little is known about how developmental time impacts stem cell fates. Using Arabidopsis floral stem cells as a model, we show that stem cells can undergo precise temporal regulation governed by mechanisms that are distinct from, but integrated with, those that specify cell fates. We show that two microRNAs, miR172 and miR165/166, through targeting APETALA2 and type III homeodomain-leucine zipper (HD-Zip) genes, respectively, regulate the temporal program of floral stem cells. In particular, we reveal a role of the type III HD-Zip genes, previously known to specify lateral organ polarity, in stem cell termination. Both reduction in HD-Zip expression by over-expression of miR165/166 and mis-expression of HD-Zip genes by rendering them resistant to miR165/166 lead to prolonged floral stem cell activity, indicating that the expression of HD-Zip genes needs to be precisely controlled to achieve floral stem cell termination. We also show that both the ubiquitously expressed ARGONAUTE1 (AGO1) gene and its homolog AGO10, which exhibits highly restricted spatial expression patterns, are required to maintain the correct temporal program of floral stem cells. We provide evidence that AGO10, like AGO1, associates with miR172 and miR165/166 in vivo and exhibits “slicer” activity in vitro. Despite the common biological functions and similar biochemical activities, AGO1 and AGO10 exert different effects on miR165/166 in vivo. This work establishes a network of microRNAs and transcription factors governing the temporal program of floral stem cells and sheds light on the relationships among different AGO genes, which tend to exist in gene families in multicellular organisms

    Detection and verification of malting quality QTLs using wild barley introgression lines

    Get PDF
    A malting quality quantitative trait locus (QTL) study was conducted using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession ‘ISR 42-8’ (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line × phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC2DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters α-amylase activity and Hartong 45°C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs

    Best research practices for using the Implicit Association Test

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. Interest in unintended discrimination that can result from implicit attitudes and stereotypes (implicit biases) has stimulated many research investigations. Much of this research has used the Implicit Association Test (IAT) to measure association strengths that are presumed to underlie implicit biases. It had been more than a decade since the last published treatment of recommended best practices for research using IAT measures. After an initial draft by the first author, and continuing through three subsequent drafts, the 22 authors and 14 commenters contributed extensively to refining the selection and description of recommendation-worthy research practices. Individual judgments of agreement or disagreement were provided by 29 of the 36 authors and commenters. Of the 21 recommended practices for conducting research with IAT measures presented in this article, all but two were endorsed by 90% or more of those who felt knowledgeable enough to express agreement or disagreement; only 4% of the totality of judgments expressed disagreement. For two practices that were retained despite more than two judgments of disagreement (four for one, five for the other), the bases for those disagreements are described in presenting the recommendations. The article additionally provides recommendations for how to report procedures of IAT measures in empirical articles.Economic and Social Research Council (ESRC

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Bacillus cereus </it><it>sensu lato </it>group consists of six species (<it>B. anthracis</it>, <it>B. cereus</it>, <it>B. mycoides</it>, <it>B. pseudomycoides</it>, <it>B. thuringiensis</it>, and <it>B. weihenstephanensis</it>). While classical microbial taxonomy proposed these organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the <it>Bc </it>species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors; sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine both regulatory sequences and transcriptional networks important for divergence. We began this examination by comparison to the sigma factor gene set of <it>B. subtilis</it>.</p> <p>Results</p> <p>Phylogenetic analysis of the <it>Bc </it>species-group utilizing 157 single-copy genes of the family <it>Bacillaceae </it>suggests that several taxonomic revisions of the genus <it>Bacillus </it>should be considered. Within the <it>Bc </it>species-group there is little indication that the currently recognized species form related sub-groupings, suggesting that they are members of the same species. The sigma factor gene family encoded by the <it>Bc </it>species-group appears to be the result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true heterogeneity of the sigma factor content in the <it>Bc </it>species-group.</p> <p>Conclusions</p> <p>Expansion of the sigma factor gene family appears to have preferentially occurred within the extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in general, highly conserved with those found in <it>B. subtilis</it>. Divergence of the sigma-controlled transcriptional regulons among various members of the <it>Bc </it>species-group likely has a major role in explaining the diversity of phenotypic characteristics seen in members of the <it>Bc </it>species-group.</p

    High-Throughput Screening of Australian Marine Organism Extracts for Bioactive Molecules Affecting the Cellular Storage of Neutral Lipids

    Get PDF
    Mammalian cells store excess fatty acids as neutral lipids in specialised organelles called lipid droplets (LDs). Using a simple cell-based assay and open-source software we established a high throughput screen for LD formation in A431 cells in order to identify small bioactive molecules affecting lipid storage. Screening an n-butanol extract library from Australian marine organisms we identified 114 extracts that produced either an increase or a decrease in LD formation in fatty acid-treated A431 cells with varying degrees of cytotoxicity. We selected for further analysis a non-cytotoxic extract derived from the genus Spongia (Heterofibria). Solvent partitioning, HPLC fractionation and spectroscopic analysis (NMR, MS) identified a family of related molecules within this extract with unique structural features, a subset of which reduced LD formation. We selected one of these molecules, heterofibrin A1, for more detailed cellular analysis. Inhibition of LD biogenesis by heterofibrin A1 was observed in both A431 cells and AML12 hepatocytes. The activity of heterofibrin A1 was dose dependent with 20 µM inhibiting LD formation and triglyceride accumulation by ∼50% in the presence of 50 µM oleic acid. Using a fluorescent fatty acid analogue we found that heterofibrin A1 significantly reduces the intracellular accumulation of fatty acids and results in the formation of distinct fatty acid metabolites in both cultured cells and in embryos of the zebrafish Danio rerio. In summary we have shown using readily accessible software and a relatively simple assay system that we can identify and isolate bioactive molecules from marine extracts, which affect the formation of LDs and the metabolism of fatty acids both in vitro and in vivo

    Identifying and Characterizing Alternative Molecular Markers for the Symbiotic and Free-Living Dinoflagellate Genus Symbiodinium

    Get PDF
    Dinoflagellates in the genus Symbiodinium are best known as endosymbionts of corals and other invertebrate as well as protist hosts, but also exist free-living in coastal environments. Despite their importance in marine ecosystems, less than 10 loci have been used to explore phylogenetic relationships in this group, and only the multi-copy nuclear ribosomal Internal Transcribed Spacer (ITS) regions 1 and 2 have been used to characterize fine-scale genetic diversity within the nine clades (A–I) that comprise the genus. Here, we describe a three-step molecular approach focused on 1) identifying new candidate genes for phylogenetic analysis of Symbiodinium spp., 2) characterizing the phylogenetic relationship of these candidate genes from DNA samples spanning eight Symbiodinium clades (A–H), and 3) conducting in-depth phylogenetic analyses of candidate genes displaying genetic divergences equal or higher than those within the ITS-2 of Symbiodinium clade C. To this end, we used bioinformatics tools and reciprocal comparisons to identify homologous genes from 55,551 cDNA sequences representing two Symbiodinium and six additional dinoflagellate EST libraries. Of the 84 candidate genes identified, 7 Symbiodinium genes (elf2, coI, coIII, cob, calmodulin, rad24, and actin) were characterized by sequencing 23 DNA samples spanning eight Symbiodinium clades (A–H). Four genes displaying higher rates of genetic divergences than ITS-2 within clade C were selected for in-depth phylogenetic analyses, which revealed that calmodulin has limited taxonomic utility but that coI, rad24, and actin behave predictably with respect to Symbiodinium lineage C and are potential candidates as new markers for this group. The approach for targeting candidate genes described here can serve as a model for future studies aimed at identifying and testing new phylogenetically informative genes for taxa where transcriptomic and genomics data are available
    corecore