9 research outputs found

    Application of Microarray and Functional-Based Screening Methods for the Detection of Antimicrobial Resistance Genes in the Microbiomes of Healthy Humans

    Get PDF
    The aim of this study was to screen for the presence of antimicrobial resistance genes within the saliva and faecal microbiomes of healthy adult human volunteers from five European countries. Two non-culture based approaches were employed to obviate potential bias associated with difficult to culture members of the microbiota. In a gene target-based approach, a microarray was employed to screen for the presence of over 70 clinically important resistance genes in the saliva and faecal microbiomes. A total of 14 different resistance genes were detected encoding resistances to six antibiotic classes (aminoglycosides, β-lactams, macrolides, sulphonamides, tetracyclines and trimethoprim). The most commonly detected genes were erm(B), blaTEM, and sul2. In a functional-based approach, DNA prepared from pooled saliva samples was cloned into Escherichia coli and screened for expression of resistance to ampicillin or sulphonamide, two of the most common resistances found by array. The functional ampicillin resistance screen recovered genes encoding components of a predicted AcrRAB efflux pump. In the functional sulphonamide resistance screen, folP genes were recovered encoding mutant dihydropteroate synthase, the target of sulphonamide action. The genes recovered from the functional screens were from the chromosomes of commensal species that are opportunistically pathogenic and capable of exchanging DNA with related pathogenic species. Genes identified by microarray were not recovered in the activity-based screen, indicating that these two methods can be complementary in facilitating the identification of a range of resistance mechanisms present within the human microbiome. It also provides further evidence of the diverse reservoir of resistance mechanisms present in bacterial populations in the human gut and saliva. In future the methods described in this study can be used to monitor changes in the resistome in response to antibiotic therapy

    Acetic acid increases the phage-encoded enterotoxin A expression in Staphylococcus aureus

    Get PDF
    Background: The effects of acetic acid, a common food preservative, on the bacteriophage-encoded enterotoxin A (SEA) expression and production in Staphylococcus aureus was investigated in pH-controlled batch cultures carried out at pH 7.0, 6.5, 6.0, 5.5, 5.0, and 4.5. Also, genomic analysis of S. aureus strains carrying sea was performed to map differences within the gene and in the temperate phage carrying sea. Results: The sea expression profile was similar from pH 7.0 to 5.5, with the relative expression peaking in the transition between exponential and stationary growth phase and falling during stationary phase. The levels of sea mRNA were below the detection limit at pH 5.0 and 4.5, confirmed by very low SEA levels at these pH values. The level of relative sea expression at pH 6.0 and 5.5 were nine and four times higher, respectively, in the transitional phase than in the exponential growth phase, compared to pH 7.0 and pH 6.5, where only a slight increase in relative expression in the transitional phase was observed. Furthermore, the increase in sea expression levels at pH 6.0 and 5.5 were observed to be linked to increased intracellular sea gene copy numbers and extracellular sea-containing phage copy numbers. The extracellular SEA levels increased over time, with highest levels produced at pH 6.0 in the four growth phases investigated. Using mitomycin C, it was verified that SEA was at least partially produced as a consequence of prophage induction of the sea-phage in the three S. aureus strains tested. Finally, genetic analysis of six S. aureus strains carrying the sea gene showed specific sea phage-groups and two versions of the sea gene that may explain the different sea expression and production levels observed in this study. Conclusions: Our findings suggest that the increased sea expression in S. aureus caused by acetic acid induced the sea-encoding prophage, linking SEA production to the lifecycle of the phage

    Mechanical Disruption of Lysis-Resistant Bacterial Cells by Use of a Miniature, Low-Power, Disposable Device ▿†

    No full text
    Molecular detection of microorganisms requires microbial cell disruption to release nucleic acids. Sensitive detection of thick-walled microorganisms such as Bacillus spores and Mycobacterium cells typically necessitates mechanical disruption through bead beating or sonication, using benchtop instruments that require line power. Miniaturized, low-power, battery-operated devices are needed to facilitate mechanical pathogen disruption for nucleic acid testing at the point of care and in field settings. We assessed the lysis efficiency of a very small disposable bead blender called OmniLyse relative to the industry standard benchtop Biospec Mini-BeadBeater. The OmniLyse weighs approximately 3 g, at a size of approximately 1.1 cm3 without the battery pack. Both instruments were used to mechanically lyse Bacillus subtilis spores and Mycobacterium bovis BCG cells. The relative lysis efficiency was assessed through real-time PCR. Cycle threshold (CT) values obtained at all microbial cell concentrations were similar between the two devices, indicating that the lysis efficiencies of the OmniLyse and the BioSpec Mini-BeadBeater were comparable. As an internal control, genomic DNA from a different organism was spiked at a constant concentration into each sample upstream of lysis. The CT values for PCR amplification of lysed samples using primers specific to this internal control were comparable between the two devices, indicating negligible PCR inhibition or other secondary effects. Overall, the OmniLyse device was found to effectively lyse tough-walled organisms in a very small, disposable, battery-operated format, which is expected to facilitate sensitive point-of-care nucleic acid testing
    corecore