42 research outputs found

    Manganese Oxide as an Inorganic Catalyst for the Oxygen Evolution Reaction Studied by X-Ray Photoelectron and Operando Raman Spectroscopy

    Get PDF
    Manganese oxide (MnOx_{x}) is considered a promising material for the oxygen evolution reaction (OER) to replace noble metal catalysts in water splitting. The improvement of MnOx_{x} requires mechanistic and kinetic knowledge of the four-electron transfer steps of the OER. X-ray photoelectron spectroscopy, a widely used tool to characterize the electronic structure of thin films, is used in combination with surface-enhanced Raman spectroscopy to gain a deeper knowledge of the different mixed MnOx_{x} types and their respective change in chemical composition. Using Raman spectroscopy during electrochemical measurements, all samples were found to reveal Birnessite-type MnO2_{2} motifs in alkaline media at an applied potential. Their activity correlates with two shifting Raman active modes, one of them being assigned to the formation of MnIII^{III} species, and one to the expansion of layers of MnO6_{6} octahedra. A special activation treatment leads independent of the starting material to a highly amorphous mixed-valence oxide, which shows the highest OER activity

    CuCo2_{2}S4_{4} Deposited on TiO2_{2}: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution

    Get PDF
    Metallic spinel-type CuCo2_{2}S4_{4} nanoparticles were deposited on nanocrystalline TiO2_{2} (P25®), forming heterostructure nanocomposites. The nanocomposites were characterized in detail by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), nitrogen sorption (BET) and UV/Vis spectroscopy. Variation of the CuCo2_{2}S4_{4}:TiO2_{2} ratio to an optimum value generated a catalyst which shows a very high photocatalytic H2_{2} production rate at neutral pH of 32.3 µmol/h (0.72 mLh1^{–1}), which is much larger than for pure TiO2_{2} (traces of H2_{2}). The catalyst exhibits an extraordinary long-term stability and after 70 h irradiation time about 2 mmol H2_{2} were generated. An increased light absorption and an efficient charge separation for the sample with the optimal CuCo2_{2}S4_{4}:TiO2_{2} ratio is most probably responsible for the high catalytic activity

    GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis

    Get PDF
    Dysregulated hematopoiesis occurs in several chronic inflammatory diseases, but it remains unclear how hematopoietic stem cells (HSCs) in the bone marrow (BM) sense peripheral inflammation and contribute to tissue damage in arthritis. Here, we show the HSC gene expression program is biased toward myelopoiesis and differentiation skewed toward granulocyte-monocyte progenitors (GMP) during joint and intestinal inflammation in experimental spondyloarthritis (SpA). GM-CSF-receptor is increased on HSCs and multipotent progenitors, favoring a striking increase in myelopoiesis at the earliest hematopoietic stages. GMP accumulate in the BM in SpA and, unexpectedly, at extramedullary sites: in the inflamed joints and spleen. Furthermore, we show that GM-CSF promotes extramedullary myelopoiesis, tissue-toxic neutrophil accumulation in target organs, and GM-CSF prophylactic or therapeutic blockade substantially decreases SpA severity. Surprisingly, besides CD4+ T cells and innate lymphoid cells, mast cells are a source of GM-CSF in this model, and its pathogenic production is promoted by the alarmin IL-33

    An Alternate STAT6-Independent Pathway Promotes Eosinophil Influx into Blood during Allergic Airway Inflammation

    Get PDF
    Enhanced eosinophil responses have critical roles in the development of allergic diseases. IL-5 regulates the maturation, migration and survival of eosinophils, and IL-5 and eotaxins mediate the trafficking and activation of eosinophils in inflamed tissues. CD4⁺ Th2 cells are the main producers of IL-5 and other cells such as NK also release this cytokine. Although multiple signalling pathways may be involved, STAT6 critically regulates the differentiation and cytokine production of Th2 cells and the expression of eotaxins. Nevertheless, the mechanisms that mediate different parts of the eosinophilic inflammatory process in different tissues in allergic airway diseases remain unclear. Furthermore, the mechanisms at play may vary depending on the context of inflammation and microenvironment of the involved tissues. We employed a model of allergic airway disease in wild type and STAT6-deficient mice to explore the roles of STAT6 and IL-5 in the development of eosinophilic inflammation in this context. Quantitative PCR and ELISA were used to examine IL-5, eotaxins levels in serum and lungs. Eosinophils in lung, peripheral blood and bone marrow were characterized by morphological properties. CD4⁺ T cell and NK cells were identified by flow cytometry. Antibodies were used to deplete CD4⁺ and NK cells. We showed that STAT6 is indispensible for eosinophilic lung inflammation and the induction of eotaxin-1 and -2 during allergic airway inflammation. In the absence of these chemokines eosinophils are not attracted into lung and accumulate in peripheral blood. We also demonstrate the existence of an alternate STAT6-independent pathway of IL-5 production by CD4⁺ and NK cells that mediates the development of eosinophils in bone marrow and their subsequent movement into the circulation

    Acoustic telemetry reveals strong spatial preferences and mixing during successive spawning periods in a partially migratory common bream population

    Get PDF
    Partial migration, whereby a population comprises multiple behavioural phenotypes that each have varying tendencies to migrate, is common among many animals. Determining the mechanisms by which these phenotypes are maintained is important for understanding their roles in population structure and stability. The aim here was to test for the temporal and spatial consistency of migratory phenotypes in a common bream Abramis brama (‘bream’) population, and then determine their social preferences and extent of mixing across three successive annual spawning periods. The study applied passive acoustic telemetry to track the movements of bream in the River Bure system of the Norfolk Broads, a lowland wetland comprising highly connected riverine and lacustrine habitats. Analyses revealed that individual migratory phenotype was highly consistent across the three years, but this was not predicted by fish sex or length at tagging. During the annual spawning periods, network analyses identified off-channel areas visited by both resident and migrant fish that, in non-spawning periods, were relatively independent in their space use. Within these sites, the co-occurrence of bream was non-random, with individuals forming more preferred and avoided associations than expected by chance. These associations were not strongly predicted by similarity in fish length, sex or behavioural phenotype, indicating that the resident and migrant phenotypes mixed during their annual spawning periods. The results suggested these different phenotypes, with spatially distinct resource use in non-spawning periods, comprised a single metapopulation, with this having important implications for the management of this wetland resource

    Effective monitoring of freshwater fish

    Get PDF
    Freshwater ecosystems constitute only a small fraction of the planet’s water resources, yet support much of its diversity, with freshwater fish accounting for more species than birds, mammals, amphibians, or reptiles. Fresh waters are, however, particularly vulnerable to anthropogenic impacts, including habitat loss, climate and land use change, nutrient enrichment, and biological invasions. This environmental degradation, combined with unprecedented rates of biodiversity change, highlights the importance of robust and replicable programmes to monitor freshwater fish assemblages. Such monitoring programmes can have diverse aims, including confirming the presence of a single species (e.g. early detection of alien species), tracking changes in the abundance of threatened species, or documenting long-term temporal changes in entire communities. Irrespective of their motivation, monitoring programmes are only fit for purpose if they have clearly articulated aims and collect data that can meet those aims. This review, therefore, highlights the importance of identifying the key aims in monitoring programmes, and outlines the different methods of sampling freshwater fish that can be used to meet these aims. We emphasise that investigators must address issues around sampling design, statistical power, species’ detectability, taxonomy, and ethics in their monitoring programmes. Additionally, programmes must ensure that high-quality monitoring data are properly curated and deposited in repositories that will endure. Through fostering improved practice in freshwater fish monitoring, this review aims to help programmes improve understanding of the processes that shape the Earth's freshwater ecosystems, and help protect these systems in face of rapid environmental change

    The Early Life of Julian the Apostate

    No full text
    corecore