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Abstract 34 

Freshwater ecosystems constitute only a small fraction of the planet’s water resources, 35 

yet support much of its diversity, with freshwater fish accounting for more species than 36 

birds, mammals, amphibians, or reptiles.  Fresh waters are, however, particularly 37 

vulnerable to anthropogenic impacts, including habitat loss, climate and land use change, 38 

nutrient enrichment, and biological invasions. This environmental degradation, combined 39 

with unprecedented rates of biodiversity change, highlights the importance of robust and 40 

replicable programmes to monitor freshwater fish assemblages. Such monitoring 41 

programmes can have diverse aims, including confirming the presence of a single species 42 

(e.g. early detection of alien species), tracking changes in the abundance of threatened 43 

species, or documenting long-term temporal changes in entire communities. Irrespective 44 

of their motivation, monitoring programmes are only fit for purpose if they have clearly 45 

articulated aims and collect data that can meet those aims. This review, therefore, 46 

highlights the importance of identifying the key aims in monitoring programmes, and 47 

outlines the different methods of sampling freshwater fish that can be used to meet these 48 

aims. We emphasise that investigators must address issues around sampling design, 49 

statistical power, species’ detectability, taxonomy, and ethics in their monitoring 50 

programmes. Additionally, programmes must ensure that high-quality monitoring data 51 

are properly curated and deposited in repositories that will endure. Through fostering 52 

improved practice in freshwater fish monitoring, this review aims to help programmes 53 

improve understanding of the processes that shape the Earth's freshwater ecosystems, and 54 

help protect these systems in face of rapid environmental change. 55 

Keywords: Biodiversity Targets; Ecological Monitoring; Environmental Assessment; 56 

Environmental Management; Rivers; Sampling Design  57 
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1. Introduction 83 

Human-driven environmental changes continue to raise substantial concerns for 84 

biodiversity conservation and have led to the development and implementation of many 85 

ecological monitoring programmes around the world (Nichols & Williams, 2006). These 86 

programmes generally aim to understand and manage the interactions of environmental 87 

change with biodiversity (Fölster et al., 2014). Given the increasing seriousness of 88 

environmental degradation, the need for effective ecological and biodiversity monitoring 89 

programmes has never been higher (Lindenmayer & Likens, 2010). Freshwater 90 

ecosystems are particularly imperilled by anthropogenic activities worldwide. Although 91 

fresh waters cover less than 1% of the earth’s surface, they support high levels of 92 

biodiversity (Dudgeon et al., 2006; Strayer & Dudgeon, 2010). Extinction rates of 93 

freshwater taxa are considerably higher than terrestrial species (Sala et al., 2000), due to 94 

issues including habitat loss, climate and land use change, pollution, and biological 95 

invasions (Ormerod et al., 2010; Stendera et al., 2012). At approximately 13,000 species, 96 

freshwater fish represent 40-45% of global fish diversity (Lévêque et al., 2008), with this 97 

highly diverse group including some of the most imperilled animals on the planet (Cooke 98 

et al., 2012).  99 

Freshwater fishes also provide ecosystem services of major economic, nutritional, 100 

scientific, historical, and cultural importance (IUCN FFSG, 2015). For example, 101 

freshwater and marine fisheries jointly constitute the largest extractive use of wildlife in 102 

the world and contribute to overall economic wellbeing by means of export commodity 103 

trade, tourism, and recreation (Santhanam, 2015). Freshwater fish provide a major source 104 

of protein for humans and support the livelihoods of many people (Holmlund & Hammer, 105 

1999), particularly in the Global South. However, there are serious threats to this valuable 106 
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resource related to over-exploitation and other anthropogenic stressors (Allan et al., 2005; 107 

de Kerckhove et al., 2015). 108 

The wide range of responses of freshwater fishes to anthropogenic stressors make 109 

fish valuable indicators for assessing the biological and ecological integrity of fresh 110 

waters and their catchments (Fausch et al., 1984; Magurran et al., 2018; Schiemer, 2000). 111 

The breadth of fundamental information on ecology and taxonomy, combined with their 112 

higher societal importance compared to other freshwater taxa, makes freshwater fish a 113 

popular target taxon in assessments of ecological integrity (Simon & Evans, 2017). 114 

Correspondingly, freshwater fishes are commonly used for evaluating the functioning and 115 

status of freshwater ecosystems and habitat quality. These assessments, however, are only 116 

as good as the data that underpin them. For this reason, effective and meaningful 117 

monitoring of fish populations and communities in freshwater habitats is essential. 118 

The need for effective monitoring in ecological research is well-recognized and 119 

there are many monitoring programmes that have provided important scientific advances 120 

and crucial information for environmental policy (Lovett et al., 2007). For example, 121 

freshwater fish monitoring has highlighted changes in species diversity and species status 122 

in rivers and lakes (e.g. Counihan et al., 2018; Holmgren et al., 2016; Wagner et al., 123 

2014), played a central role in fish-based assessment systems (e.g. for the European 124 

Water Framework Directive, Pont et al., 2007), and resulted in guidelines on standardized 125 

fish sampling methods (e.g. Bonar et al., 2009). 126 

There remains a series of issues and knowledge gaps with how these programmes 127 

are designed and implemented. In particular, freshwater fish monitoring that has been 128 

poorly planned and lacks focus results in ineffective programmes that rarely meet their 129 

aims (Lindenmayer & Likens, 2009, 2010; Marsh & Trenham, 2008; Nichols & 130 
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Williams, 2006). Moreover, there is considerable disparity across developed and 131 

developing regions in how monitoring schemes are implemented. This is an acute 132 

problem, as developing regions are often characterised by high levels of fish diversity but 133 

limited resources for research (e.g. Vörösmarty et al., 2010). Where monitoring 134 

programmes are in place, there are almost inevitably trade-offs in temporal and spatial 135 

scales of measurement (Pollock et al., 2002), but these trade-offs are often poorly 136 

quantified or justified, resulting in long-term data lacking statistical power. Finally, there 137 

are inherent issues over programmes being either question driven or mandated, with the 138 

latter often lacking rigour in design resulting in their provision of only coarse-level 139 

summaries of change (Lindenmayer & Likens, 2010).  140 

In this review, we examine these issues and knowledge gaps, and make 141 

recommendations about how they can be addressed within monitoring programmes. Our 142 

aim is to foster improved practices by: a) summarizing key questions that monitoring can 143 

address when aims are clear, and the approach is rigorous (Section 3 and 4); b) 144 

synthesising issues related to sampling design and statistical models, and indicating how 145 

they might be overcome (Section 5); c) reviewing different monitoring and sampling 146 

approaches (Section 6); d) considering challenges related to species’ detectability, 147 

taxonomy, economical costs, and ethics (Section 7);  and, e) discussing the importance of 148 

the appropriate management of monitoring data (Section 8). 149 

  150 
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2. History of fish monitoring 151 

 The long history of monitoring programmes is reflected in the scientific literature 152 

(Fig. S1.1). Early, though presumably less systematic, efforts in freshwater fish 153 

monitoring recorded temporal changes in fisheries, such as reports of Atlantic salmon 154 

Salmo salar declines in a central European river that date back to the 18th century 155 

(reviewed by Wolter, 2015). The 20th century marked a shift towards systematic 156 

sampling with the majority of fish monitoring programmes being established before 1979 157 

(Mihoub et al., 2017). Despite this and in contrast to other taxonomic groups such as 158 

birds, mammals, and many plants, freshwater fish are generally under-represented in 159 

contemporary biodiversity studies and monitoring programmes (Mihoub et al., 2017; 160 

Troudet et al., 2017). This underrepresentation of fish, despite their high diversity, might 161 

be explained partly by the fact that they occur in aquatic environments. Thus, in contrast 162 

to many terrestrial biota, which can be monitored by visual observations and where 163 

community scientists (also known as citizen scientists) can be easily recruited (Thomas, 164 

1996), fish require more specialized sampling methods. However, one feature shared with 165 

other taxa is that the spatial extent of fish monitoring is highly biased, being concentrated 166 

in the Global North (Fig. 1). Freshwater ecosystems (e.g. lacustrine and fluvial habitats) 167 

are also generally neglected in fish monitoring programmes, compared to the marine 168 

environments (Fig. 1). A further issue is that even when freshwater fish are monitored, 169 

the resulting data are often not published or electronically archived, and thus are often 170 

inaccessible to the broader scientific community (Lindenmayer & Likens, 2009; Revenga 171 

et al., 2005).  172 

 173 

[Fig. 1] 174 
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3. Aims of effective monitoring 175 

As it is now widely recognised, ecological communities experience continuous 176 

temporal turnover, i.e. change in species composition and abundances (e.g. Darwin, 177 

1859; MacArthur & Wilson, 1967). Some degree of temporal turnover is necessary to 178 

maintain ecosystem functions and properties. However, the rate of temporal turnover in 179 

contemporary assemblages exceeds the baseline predicted by ecological theory (Dornelas 180 

et al., 2014). Consequently, the overall goal in effective monitoring of freshwater fish 181 

should not be limited to documenting change per se, but should also address the drivers 182 

of the observed change (thereby identifying potential remedies).  183 

There are a number of definitions of monitoring in conservation, ecological, and 184 

aquatic contexts (Supporting Information Table S1.1). Here, we define freshwater fish 185 

monitoring as repeated, field-based measurements of fish that are collected in a 186 

systematic manner, allowing the potential detection of important shifts at 187 

population or community levels. Therefore, effective monitoring requires a clear set of 188 

specific objectives linked to the overall goal of detecting systemic shifts in fish 189 

populations or communities over time and space, and so should utilise methodologies and 190 

sampling effort that provide the data and statistical power sufficient to meet these 191 

objectives.  192 

 193 

 194 

4. Different questions lead to different monitoring approaches 195 

Monitoring programmes need a rigorous design and protocol for collection of data 196 

over a sufficiently long period to ensure sufficient statistical power to detect trends or 197 
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changes and to enable the answering of the motivating questions (Lindenmayer & Likens, 198 

2010; Nichols & Williams, 2006). Irrespective of the motivating question, freshwater fish 199 

monitoring should generally help to advance ecosystem understanding and provide 200 

information needed to identify potential remedies, requiring the detection of significant 201 

changes at the community level (e.g. quantifying trends in species richness, temporal �- 202 

and �-diversity, functional diversity, food web structure), and/or at the population level 203 

(e.g. quantifying trends in population size and dynamics, abundance of keystone, 204 

threatened or non-native species, genetic diversity, species ranges, fisheries stocks, size 205 

and age structure, behaviour, phenology, growth, shape, and/or condition). An exception 206 

to this might be in mandated-monitoring programmes where highly specific data (e.g. on 207 

species presence, abundance, and/or age structure) are compared against predetermined 208 

standards (Alexander, 2008; Hellawell, 1991; Hurford, 2010), such as in the Water 209 

Framework Directive of the European Union (Birk et al., 2012). In a restoration context, 210 

monitoring often aims at assessing the success of implemented measures (Kershner, 211 

1997). Thereby, monitoring is not a stand-alone activity; it contributes to conservation 212 

oriented-science and is used to inform a structured decision-making processes in 213 

conservation management (Nichols & Williams, 2006).  214 

 215 

 216 

It is the question(s) that determine the design of a monitoring programme. Some 217 

questions can be addressed with species-specific presence-only data, while others might 218 

require sampling of an entire community (Table 1). The latter case may utilise a range of 219 

capture methods (Zale et al., 2012) that can, in turn, help assess the spatial behaviour, 220 

trophic ecology, and genetic characteristics of individuals (Lucas & Baras, 2000; 221 
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Lundqvist et al., 2010). Alternative sampling methods include more recent approaches 222 

such as community science and the use of social media/crowd-sourced science (Section 223 

6). The data needs associated with a suite of key monitoring questions are summarised in 224 

Table 1. We stress the importance of programmes clearly articulating their questions as 225 

this ensures that the sampling design can generate the data required to answer them. As a 226 

minimum, there should be identification of what needs to be measured (e.g. fish 227 

abundance, fish attributes), the spatial and temporal scope of the programme (e.g. 228 

duration, scale; cf. Dixon & Chiswell, 1996); the criteria for reliability (e.g. precision, 229 

power); and the practical constraints (e.g. human resources, costs, social conflicts). 230 

 [Table 1] 231 

5. Sampling and network design, and statistical models 232 

Sampling design relates to the temporal frequency of sampling within a designed 233 

network that comprises a series of spatially segregated sites. As such, decisions need to 234 

be made regarding how to allocate monitoring effort within and among years, and across 235 

sites (Larsen et al., 2001). Two major principles, the avoidance of bias in the selection 236 

procedure and achievement of high precision, should underlie the design (Crawford, 237 

1997). A sampling design can be based on probabilistic or non-probabilistic methods. 238 

Probabilistic designs include simple random sampling, systematic sampling, and 239 

stratified random sampling, with the latter two being more appropriate for heterogeneous, 240 

hierarchically-structured aquatic environments, such as river drainages (Lowe et al., 241 

2006; Thorp et al., 2006). However, in fish monitoring, sample sites are frequently 242 

selected non-probabilistically, often based on judgment or convenience (Pope et al., 243 

2010; Wilde & Fisher, 1996). Irrespective of this, decisions on the design of the 244 
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programme should be based on a priori defined statistical models that can reliably 245 

answer the questions motivating the monitoring programme, such as those related to 246 

quantifying community structure, species abundance or other population parameters (e.g. 247 

age structure). These questions require consideration during design phases as well as 248 

additional resources and time, separate from the monitoring programme itself, for 249 

completion.  250 

Where the aims are to detect changes related to (local) management actions such 251 

as habitat restoration, or to impact assessment, before-after control-impact (BACI) 252 

designs are frequently used (Osenberg et al., 2006; Stewart-Oaten & Bence, 2001; 253 

Thiault et al., 2017). Here, a priori power analyses (Legg & Nagy, 2006; Marsh & 254 

Trenham, 2008; Maxwell & Jennings, 2005; Peterman, 1990) can guide the estimation of 255 

the minimum number of samples needed to detect a certain effect size (or minimum 256 

detectable difference) according to a desired level of significance (Peterman, 1990; Steidl 257 

et al., 1997). 258 

However, as fish monitoring programmes are typically undertaken to detect 259 

temporal changes in populations over potentially larger scales (Cowx et al., 2009), 260 

statistical control and replication designs are often unfeasible (Carpenter et al., 1989; 261 

Hargrove & Pickering, 1992; Schindler, 1998; Turner et al., 2001). Advanced Bayesian 262 

(hierarchical) models (Hobbs & Hooten, 2015) offer useful alternatives, especially when 263 

working with imperfect datasets and/or uncertainty associated with sampling and 264 

observation, as it is often the case in fish monitoring. For example, Wenger et al. (2017) 265 

applied a Bayesian approach to predict the viability of multiple (potentially isolated) 266 

populations of Lahontan cutthrout trout (Oncorhynchus clarkii henshawi); this approach 267 

enabled predictions to be made in minimally-sampled or even un-sampled populations. 268 
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Other applications of Bayesian models to analyse monitoring data include estimations of 269 

occupancy and richness of fish while accounting for imperfect detection (Bayley & 270 

Peterson, 2001; Coggins et al., 2014), and for relating environmental drivers to stream 271 

fish population dynamics (Letcher et al., 2015; Wheeler et al., 2018). 272 

The spatial structure of dendritic networks, and their associated connectivity and 273 

directionality, make river systems particularly challenging for monitoring. The effect of 274 

spatial variability can be reduced by stratified random sampling, i.e. the proportional 275 

sampling of strata that represent different habitat units (Downes et al., 2002) and is 276 

widely used in aquatic ecosystems (Dukerschein et al., 2011; Haxton, 2011; Wilde & 277 

Fisher, 1996). More recently, Spatial Stream Network models (SSN) have been 278 

developed to better capture the continuous nature of rivers (Fausch et al., 2002) and to 279 

account for the spatially autocorrelated relationships between locations within a stream 280 

network (Isaak et al., 2014). For example, Isaak et al. (2017) analysed a large fish density 281 

dataset using SSN models to obtain population estimates for trout species from 108 sites 282 

in a 735 km river network. The SSN methodology is accessible via the statistical tools 283 

‘STARS’ (Peterson & Ver Hoef, 2014) and ‘SSN’ (Ver Hoef et al., 2014). 284 

In a systematic sampling design, the first sample site is chosen randomly and all 285 

subsequent samples are regularly placed in space or time (Conroy & Carroll, 2009; Quinn 286 

& Keough, 2002). A systematic design is useful when investigating effects of 287 

environmental gradients.  A recent development in this context is the Generalized 288 

Random Tessellation Stratified design (GRTS) (Stevens & Olsen, 2003, 2004), available 289 

from the statistical package ‘spsurvey’ (Kincaid & Olsen, 2016). GRTS allows design-290 

based inferences to entire areas based on spatially-balanced samples, i.e. a spatial 291 

distribution of sample locations that balances the advantages of simple or stratified 292 
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random samples or systematic samples (Larsen et al., 2008). GRTS has been evaluated as 293 

reliable and cost-effective, for example, for monitoring North American salmonids 294 

(Gallagher et al., 2010). 295 

The adaptive approach (Box 1) argues that the sampling design should be re-296 

evaluated and re-designed as necessary as data are gathered and their variability analysed. 297 

An analysis of the components of variance and their influence on trend detection 298 

capability can help in preparing design-efficient trend monitoring networks (Larsen et al., 299 

2001). This ensures that changes in the chemical, physical, or biological conditions are 300 

accounted for in the sampling design (Buckland et al., 2012; Strobl & Robillard, 2008). 301 

 302 

Box 1. Adaptive monitoring 303 

There is often high uncertainty and complexity in the drivers of fish community 304 

change that can range from global environmental change (e.g. climate change; Graham & 305 

Harrod, 2009; Radinger et al., 2016) to more local issues (e.g. altered flow regimes; 306 

Harby et al., 2007). Monitoring programmes must be capable of providing data suitable 307 

for the continued management of the resources (Polasky et al., 2011). The informed 308 

decision-making process of adaptive monitoring (sensu Lindenmayer & Likens, 2009) 309 

enables monitoring programmes to evolve in response to new questions, information, 310 

situations, or conditions or the development of new protocols (Lindenmayer et al., 2011). 311 

Adaptive monitoring is considered a long-term activity closely related to scientific 312 

research and management. The ultimate aim of any adaptive monitoring programme is to 313 

demonstrate that new insights gained through its application will improve management 314 

practices (Lindenmayer et al., 2011), potentially leading to increases in the effectiveness 315 

of monitoring for conservation.  316 
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An example of adaptive monitoring is outlined by Fölster et al. (2014) for 317 

Swedish fresh waters. At the outset the early naturalists measured specific and localized 318 

natural phenomena such as the relationship between macrophytes and lake water 319 

chemistry (Lohammar, 1938). However, the scope of the freshwater monitoring 320 

programme in Sweden and the number of monitored sites increased along with the 321 

emergence of new challenges related to, for example, eutrophication in the 1960s, acid 322 

rain in the 1970s, and the EU Water Framework Directive in 2000. Today, the program 323 

consists of regular long-term monitoring of water chemistry and biodiversity (including 324 

freshwater fish) in 114 streams and 110 lakes (Fölster et al., 2014). This example not only 325 

illustrates the value of adaptive monitoring by providing long-term data to understand 326 

and overcome many of the emerging environmental problems, but also emphasizes its 327 

potential to investigate future challenges, e.g. related to climate change, testing resilience 328 

theory, or predicting regime shifts and tipping points. 329 

6. Approaches to fish monitoring 330 

6.1. Monitoring questions versus sampling methods 331 

The numerous sampling methods that can be utilised for fish monitoring, 332 

including capture and non-capture techniques, have been extensively reviewed (e.g. 333 

Bonar et al., 2009; Joy et al., 2013; Zale et al., 2012). Capture methods involve the 334 

physical removal of fish from the water to enable species identification, and the 335 

collection of biometric data (e.g. length, weight) and hard structures (e.g. scales) for 336 

ageing the fish to determine population demographics and dynamics. The most common 337 

methods available for capturing freshwater fish include electrofishing, netting, and 338 
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trapping (Bonar et al., 2009). Non-capture methods (e.g. hydroacoustic surveys) can 339 

provide data complementary to capture techniques. They can also be used where capture 340 

methods lack sufficient power to provide robust estimates of population abundances 341 

(Hughes, 1998; Lyons, 1998). However, a feature of some non-capture methods is their 342 

taxonomic ambiguity due to either their lack of fish capture (Boswell et al., 2007) 343 

(Section 6.4) or through erroneous identification of specimens (Section 7.2).  344 

The application of a sampling method in monitoring might differ markedly 345 

according to the programme’s aims. For example, electrofishing can be applied within 346 

point abundance sampling designs that can be effective for monitoring the diel activity of 347 

(small) fishes (reviewed by Copp, 2010) or the status of rare species (e.g. the critically 348 

endangered European eel, Anguilla anguilla; Laffaille et al., 2005). However, capturing 349 

fish in longer river reaches using electrofishing might be more suitable where the 350 

monitoring aim is to assess biological/ecological integrity, as biotic indices require data 351 

at multiple organization levels, from size structure to assemblage richness (e.g. Noble et 352 

al., 2007; Pont et al., 2007; Schmutz et al., 2000), often in conjunction with data on 353 

habitat quality (e.g. Van Liefferinge et al., 2010; Milner et al., 1998). 354 

6.2. Capture techniques and application within monitoring programmes 355 

The challenge of ensuring that capture methods are fit for purpose, such as 356 

evaluating the composition of an assemblage (details in Box 2) (e.g. Zale et al., 2012), 357 

has resulted in a series of standardised protocols being made available for sampling 358 

inland fish populations in many areas of the world, including Europe, North America, and 359 

New Zealand  (Bonar et al., 2009; CEN, 2003, 2006; Joy et al., 2013; Table S4.1). 360 

Standardization not only refers to the equipment used or how it is used, but also to the 361 

timing of sampling, the habitats that are sampled, and effort applied (Bonar et al., 2011). 362 
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Standardizing the collection and reporting of fish monitoring data offers many 363 

advantages including an improved ability to compare data across regions or time, 364 

improved communication across political boundaries, and the control of bias associated 365 

with different sampling techniques (Cooke et al., 2016). Standardization in fish sampling 366 

has been considered an important step forward in managing long-term data and assessing 367 

efficacy of large spatial scale management strategies (Bonar et al., 2017). This is of 368 

particular relevance in monitoring programmes where many researchers combine datasets 369 

to jointly address questions over time and space. For a comprehensive overview on 370 

standardisation of fish sampling across sampling gears and aquatic environments, see 371 

Bonar et al. (2009). 372 

Two fundamental concepts have emerged in relation to the application of capture 373 

techniques and protocols to fish monitoring: the importance of sampling design 374 

(discussed earlier in Section 5) and response design (Stevens & Urquhart, 2000). 375 

Response design incorporates decisions about how to measure the fish community 376 

and population metrics with accuracy and precision (Pollock et al., 2002). For example, 377 

where assessments of age structure, growth rates, and recruitment are required, then 378 

decisions are needed on the ageing method, such as whether to rely on length-frequency 379 

analyses or collect hard structures, such as scales, from captured fishes (e.g. Hamidan & 380 

Britton, 2015). If scales are collected, then decisions are needed regarding how many 381 

individual fish need to be sampled and over what size range (Busst & Britton, 2014). In 382 

addition, where hard structures are being used for ageing, the frequency of annulus 383 

formation might need validating to maximise accuracy (Beamish & McFarlane, 1983), 384 

requiring regular sampling throughout the year or mark-recapture methods (Britton et al., 385 

2010; Chisnall & Kalish, 1993). Scale samples for fish ageing, and tissue samples for 386 
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genetic and stable isotope analyses, can be collected from fish captured by anglers to 387 

complement on-going monitoring (Gutmann Roberts et al., 2017).  388 

 389 

Box 2: Sampling effort and biodiversity estimation 390 

Decisions about the spatial extent and duration of sampling have important 391 

implications. If the goal is to quantify an attribute of a population of interest, then, all 392 

other things being equal, estimates of abundance will scale predictably with effort. There 393 

are a range of statistical techniques, such as removal sampling (Southwood & Henderson, 394 

2000), that can be used to estimate population size and/or to ensure that effort is adequate 395 

for the intended purpose. It is relatively straightforward, therefore, to compute trends for 396 

single populations.  397 

If, on the other hand, the aim is to quantify compositional turnover (temporal b 398 

diversity), or to calculate a metric of a diversity, such as assemblage richness, it is 399 

essential that any temporal or spatial comparisons take account of the inherent 400 

unevenness of ecological assemblages. Although the number of individuals (across all 401 

species) will typically increase linearly if an assemblage is sampled over a longer time 402 

period, or the area sampled is increased, the species accumulation curve will gradually 403 

flatten (Fig. 2). As a result, any metrics that either explicitly or implicitly depend on 404 

richness cannot be scaled by simple multiplication or division. Species richness is the 405 

metric most obviously influenced by this, but most biodiversity indices, including, for 406 

example, the Berger-Parker dominance metric (Magurran, 2004, 2011; Magurran & 407 

McGill, 2011) and Jaccard similarity (Baselga, 2010), are also affected. 408 

Fortunately, there are statistical solutions to this problem. Rarefaction is the 409 

traditional way of making fair comparisons across assemblages or of community 410 



18 
 

diversity over space or time (Gotelli & Colwell, 2001, 2011). In essence, the samples (or 411 

assemblages) are rarefied to the smallest common sampling effort. Rarefaction can be 412 

computed in relation to the minimum number of individuals sampled, or to the smallest 413 

number of sampling units. While most rarefaction analyses focus on species richness, in 414 

principle many different biodiversity metrics can be rarefied. In the case of temporal or 415 

spatial b diversity comparisons, the investigator should use sample-based rarefaction as 416 

this automatically retains the identity of the species involved. A recent innovation is to 417 

extrapolate to the largest sample size rather than rarefy to the smallest one (Chao et al., 418 

2014; Hsieh et al., 2016). Rarefaction can also be used to make informed comparisons 419 

about community structure and composition using null model approaches (Cayuela et al., 420 

2015; Cayuela & Gotelli, 2014). In summary then, any computation of trends in 421 

community a diversity or b diversity should either be based on sampling that has been 422 

rigorously standardized or data that have been statistically standardized (by rarefaction or 423 

similar) – see Fig. 2 for an example. 424 

[Fig. 2] 425 

 426 

6.3. Capture and release methods 427 

It is often desirable to release captured fish, unharmed, to the site of capture, 428 

without further intervention. However, attaching tracking devices or marking fish, prior 429 

to release, can substantially increase the amount of information obtained. For example, 430 

biotelemetry using acoustic, radio, or passive integrated transponder tags (Cooke et al., 431 

2011; Thiem et al., 2011) can reveal individual variability in movements and behaviours 432 

within and between populations (Lucas & Batley, 1996), elucidate population mixing and 433 

gene flow (Huey et al., 2011), assess the effects of connectivity and habitat fragmentation 434 
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on river fishes (Capra et al., 2017; Lin et al., 2018), and help evaluate management units 435 

for fisheries or conservation (Funk et al., 2012). 436 

Mark-recapture studies can also strongly complement fish monitoring by providing 437 

alternative estimates of population size and fish ages (Hamel et al., 2015; Sass et al., 438 

2010). They can also reveal the extent of migrations of individual fish between habitats 439 

within specific populations (Sandlund et al., 2016). 440 

6.4. Non-capture monitoring techniques 441 

Non-capture monitoring methods to complement capture data include 442 

environmental DNA and hydroacoustic assessments. These methods are often applied 443 

within monitoring programmes to provide data on different components of the 444 

community or population, and are especially useful for larger water bodies where capture 445 

techniques are often difficult to apply or are inefficient. 446 

Environmental DNA (‘eDNA’ hereafter) is based on the presence DNA of fishes 447 

in water samples originating from mucus and faeces, the sloughing off of cells from their 448 

gut lining, and the decomposition of dead individuals (Davison et al., 2016; Jerde et al., 449 

2011; Turner et al., 2015). DNA is extracted from water samples, and polymerase chain 450 

reaction (PCR) used in conjunction with species-specific genetic markers to amplify 451 

DNA fragments to indicate the presence of target species (Turner et al., 2015). The 452 

method is increasingly being applied to the monitoring of freshwater species (Fig. S1.1), 453 

including those of conservation importance (Takahara et al., 2012; Thomsen et al., 2012).  454 

There are two basic ways that eDNA can be applied in a fish monitoring 455 

programme. Water samples can be analysed to detect the presence of a specific species, 456 

or can be screened for whole communities of organisms using ‘eDNA metabarcoding’ 457 

(Hänfling et al., 2016; Lawson Handley, 2015). Recent refinements have improved the 458 
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reliability of species’ detection (Hänfling et al., 2016), but some questions remain, for 459 

example, on factors affecting the rate of DNA breakdown in the environment (Barnes et 460 

al., 2014). However, the non-detection of species-specific DNA fragments in a sample of 461 

river water does not necessarily imply the absence of the target species, nor does a 462 

positive signal necessarily imply that the species is present, as eDNA could have been 463 

transported from upstream areas (Roussel et al., 2015). Nevertheless, as refinements in 464 

the technique continue, it should increasingly provide a strong complement to capture 465 

methods, especially in regions where knowledge on the species likely to be present is 466 

available. Although issues over the reliability of eDNA to provide estimates of 467 

abundance are being addressed, they remain highly challenging (Lacoursière-Roussel et 468 

al., 2016). One important consideration will be the integration of data collected using 469 

traditional methods with inferences about fish communities obtained using eDNA (see 470 

6.6 below).  471 

Hydroacoustic assessments involve the application of an acoustic beam from a 472 

transducer through the water. Any fish within the beam returns a signal, with the target 473 

strength of the returning signal indicating the relative size of the fish. Whilst the method 474 

generates data on fish density, there is high taxonomic ambiguity in terms of species 475 

present, with no biometric data collected (other than conversion of target strengths to 476 

approximate fish lengths) (Boswell et al., 2007). Nevertheless, hydroacoustic assessments 477 

have been used extensively for fish monitoring, especially in lakes where sampling 478 

strategies have been developed (e.g. Guillard & Vergès, 2007), with target strengths 479 

related to species-specific attributes to increase knowledge on community composition 480 

(Frouzova et al., 2005). In lowland rivers, such as the River Thames and River Trent in 481 

England, mobile hydroacoustic techniques have been applied to monitor the spatial and 482 
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temporal distributions of fish communities (Hughes, 1998; Lyons, 1998). The method has 483 

also been applied to assessing the status of endangered fishes (Zhang et al., 2009).  484 

6.5. Anglers’ data and data mining 485 

Statistics on angler catch rates and species composition have been applied to the 486 

monitoring of fish community composition of large lowland rivers where other fish 487 

capture methods are either difficult to apply or inefficient (Jones et al., 1995). For 488 

example, in the River Trent, England, angler catch statistics monitored changes in the fish 489 

assemblage in relation to improvements in water quality (Cooper & Wheatley, 1981; 490 

Cowx & Broughton, 1986). More recently, catch statistics from individual anglers were 491 

used to assess the population status of mahseer fishes (Tor spp.) in the River Cauvery, 492 

India (Pinder et al., 2015a,b). An issue with angler-based data is that they tend to be 493 

biased for specific species and size ranges (Amat Trigo et al., 2017). 494 

Data mining, where spatial and temporal data on species are gathered through 495 

information available from on-line sources, is a different non-capture technique for 496 

monitoring changes in the distribution of species. Databases including the Global 497 

Biodiversity Information Facility (GBIF; www.gbif.org/), the Global Population 498 

Dynamics Database (GPDD; www.imperial.ac.uk/cpb/gpdd2/secure/login.aspx), or 499 

VertNet.org enable users to access global distribution records of species via directed 500 

searches that provide records with location coordinates for use within GIS. The GPDD 501 

also provides data on population dynamics, rather than just distribution data. The 502 

FishBase database (Froese & Pauly, 2018) provides species-level information gathered 503 

from the literature, including occurrences and a wide range of ecological data.  504 

An alternative method to using these online databases is monitoring the 505 

distribution of fishes via community science, particularly via social media platforms. 506 
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Indeed, the application of community science and crowd sourcing to the collection of 507 

biological data is increasingly frequent (e.g. www.inaturalist.org, Fig. S1.1), thanks to 508 

many smartphones now having GPS, high-resolution cameras, and continuous internet 509 

connection (Bik & Goldstein, 2013; Di Minin et al., 2015). For example, for monitoring 510 

distributions of non-native fish, a number of smartphone ‘apps’ are available, with these 511 

generally enabling the user to send a geo-referenced image of the species to a specific 512 

organisation for validation and recording. Current examples include ‘That’s Invasive’ 513 

(http://www.rinse-europe.eu/resources/smartphone-apps/) and ‘AquaInvaders’ 514 

(http://naturelocator.org/aquainvaders.html). Both of these ‘apps’ also provide users with 515 

information and images on specific invaders to facilitate their identification of species. 516 

Venturelli et al. (2017) have recently reviewed the opportunities and challenges 517 

associated with angler ‘apps’. 518 

Data can also be sourced from user-generated content on various social media 519 

platforms (Di Minin et al., 2015). By data-mining these non-biological sources, such as 520 

via searches of specific social media sources (e.g. https://www.youtube.com/), 521 

recreational fisheries forums and blogs, and news-media channels, fish distribution and 522 

dispersal data can be generated. For example, this approach has been applied successfully 523 

to assessments of non-native fish invasions, such as perch Perca fluviatilis and channel 524 

catfish Ictalurus punctatus in Portugal (Banha et al., 2015, 2017). Increasingly, these 525 

searches can be automated through use of computer code. For example, geo-referenced 526 

images and video of specific species within image and video hosting websites (e.g. flickr) 527 

can be searched, with GIS interfaces enabling distribution maps to be constructed (see 528 

Fig. 3) and thus temporal and spatial distribution patterns better understood (Coding 529 

Club, 2018).  530 
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 531 

[Fig. 3] 532 

 533 

6.6. Complementarity of capture and non-capture methods 534 

Data acquired from capture and non-capture methods within the same monitoring 535 

programme need to be integrated effectively. For example, fish monitoring in 536 

Windermere, England, a relatively large and deep glacial lake, has recently been 537 

complemented by application of eDNA that recorded the presence of 14 of 16 fish 538 

species known to be present, when concomitant gill net surveys only captured four fish 539 

species (Hänfling et al., 2016). Windermere has also been monitored regularly for over 540 

60 years by other methods, including fish traps, gillnets, hydroacoustics, and piscivorous 541 

fish diet composition (Langangen et al., 2011; Winfield et al., 2008, 2012). The high 542 

complementarity of these datasets has improved understanding of environmental (e.g. 543 

nutrient enrichment, warming) and other changes (e.g. invasive fishes), and illustrated 544 

their potential for monitoring other systems (e.g. Vindenes et al., 2014; Winfield et al., 545 

2010). 546 

7. Major challenges in fish monitoring 547 

7.1. Detectability 548 

Many evaluations of biodiversity, including those of freshwater fishes (Magurran, 549 

2004; Southwood & Henderson, 2000), assume that individuals have been sampled 550 

randomly from the assemblage (Buckland et al., 2011; Pielou, 1975). This is rarely 551 

achievable in nature (Pielou, 1975). In many cases, the problem arises because it is 552 
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difficult (or impossible) to know if a species that is absent from a site or sample is truly 553 

absent, or is missing through the ineffectiveness of the sampling method. Thus, it is 554 

important to thoroughly consider observation error and capture probabilities and to 555 

address issues of detectability and detection bias also in fish monitoring. Potential 556 

solutions to issues of detectability have been extensively discussed elsewhere and include 557 

modelling occupancy (Bayley & Peterson, 2001; Iknayan et al., 2014; MacKenzie et al., 558 

2002, 2006; Royle & Link, 2006; Wenger & Freeman, 2008), estimating the probability 559 

of detection of species (and/or individuals) through mark-recapture (Borchers et al., 2002, 560 

2015; Buckland et al., 2011) or distance sampling (Buckland et al., 2001, 2004, 2011), 561 

and/or demonstrating that the data are sufficiently robust to address the question posed 562 

without further correction (Buckland et al., 2011; Magurran et al., 2018). 563 

7.2. Taxonomy 564 

Taxonomic issues can often emerge in biological monitoring programmes, with 565 

the most obvious one being taxonomic uncertainty and the risk of species 566 

misidentification in the field or the laboratory. For example, Daan (2001) reported 567 

extensive species misidentifications in a marine fish database and there are many other 568 

cases in the freshwater fish literature (e.g. Hänfling et al., 2005; Serrao et al., 2014; Vidal 569 

et al., 2010). Nevertheless, a well-appreciated advantage of fish is that their taxonomy is 570 

better known and easier than in most other freshwater groups, such as invertebrates or 571 

algae, and thus fish can often be identified in the field without sacrificing individuals. 572 

However, this is less likely to be the case in species-rich regions such as the tropics, 573 

where the taxonomy is less well known, compared to regions with well-characterised fish 574 

faunas. 575 
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The extent of species misidentification in more taxonomically challenging groups, 576 

such as stream invertebrates, receives greater attention than in freshwater fish. For 577 

example, Stribling et al. (2008) compared taxonomic identification of stream macro-578 

invertebrates across eight U.S. laboratories and found means of 21% taxonomic 579 

disagreement. These kinds of errors might also occur in fish monitoring, especially in 580 

samples with high species richness or in samples from regions where taxonomy is poorly 581 

described. These studies reinforce the importance of adequate training and experience, 582 

documentation of standard procedures, and routine quality control (Stribling et al., 2003, 583 

2008). Species misidentification is even more important when fishers are interviewed to 584 

obtain local knowledge data. Here, thorough validation procedures are essential (Poizat & 585 

Baran, 1997; Valbo-Jørgensen & Poulsen, 2000). 586 

A similar problem is when taxonomy changes and it is recognised that a single 587 

species in fact comprises several cryptic species. This problem is increasingly frequent 588 

given the increasing power of molecular tools (e.g. April et al., 2011; Lara et al., 2010; 589 

Young et al., 2013). For example, Young et al. (2013) found that the majority of species-590 

level taxonomic units of the genus Cottus as evaluated by DNA barcoding did not assign 591 

to previously recognized species in this region. New taxonomic alignments hinder 592 

comparison with old samples if no specimens were preserved. In addition, the same 593 

species names may have had different synonyms in the past, meaning that databases need 594 

to be carefully revised for inconsistencies and errors. Erroneous sequences and 595 

misidentifications are also frequent in GenBank and similar sequence databases (Harris, 596 

2003). It has been estimated that up to 56% of German freshwater fish species may be 597 

incorrectly identified to species level in some databases (Knebelsberger et al., 2015). 598 

Consequently, errors in genetics databases might have major adverse impacts on eDNA 599 
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as a robust technique. It is likely that the frequency of such taxonomic problems in data is 600 

more prevalent in monitoring of freshwater fish than in research (Stribling et al., 2003). It 601 

is thus important to fully reference the taxonomic resources used in studies, not just as a 602 

quality check on methodology, but also to recognize the importance of taxonomy and the 603 

work of taxonomists (Santos & Branco, 2012; Vink et al., 2012; Wägele et al., 2011). 604 

7.3. Economic costs 605 

For a monitoring programme to be effective, successful and sustainable over the 606 

longer-term, it must not only be ecologically relevant and statistically credible, but also 607 

cost efficient, i.e. the perceived benefits of ecological monitoring (e.g. information on 608 

trends or status changes) must justify its cost (Caughlan & Oakley, 2001; Charles et al., 609 

2016; Hinds, 1984). As financial limitations always apply, sustained monitoring requires 610 

a proper selection of relevant variables that need to be measured (Braun & Reynolds, 611 

2012). Often the true costs of monitoring are not recognized and likely underestimated 612 

(Caughlan & Oakley, 2001), and its benefits depend on the value that society gives to the 613 

long-term sustainability of freshwater ecosystems. Hence, costs of monitoring need to be 614 

contrasted with the costs of not monitoring. These include increased uncertainty in 615 

evaluating outcomes and future projections, and the possibility that managers may not 616 

detect important shifts until it is too late to effectively address them.  617 

Caughlan & Oakley (2001) provided a breakdown of monitoring costs, 618 

comprising of budgetary expenses related to, for example, data collection, data 619 

management, quality assessment, data analysis, reporting and scientific oversight, 620 

opportunity costs (i.e. other benefits forgone by allocating resources to monitoring), and 621 

external costs (i.e. costs not directly covered by the monitoring programme budget). The 622 

costs for data collection – which are frequently the largest – may vary depending on the 623 
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methods applied. While established methods in fish monitoring, such as field-based 624 

capture methods (e.g. electrofishing, netting, trapping), are commonly labour intensive in 625 

the field and thus costly, the financial costs of emerging methods, such as use of eDNA, 626 

the automatized collection of data (e.g. hydroacoustic assessments), and the use of 627 

community science and data mining, are often related to post-processing, managing and 628 

analysing big data (Section 6.4). A detailed review of the costs associated with ecological 629 

monitoring can be found elsewhere (e.g. Caughlan & Oakley, 2001). 630 

7.4. Fish welfare and ethics in monitoring 631 

The importance of ethical issues relating to biological fieldwork and the need to 632 

minimize harm to species and ecosystems has repeatedly been emphasized (e.g. Bennett 633 

et al., 2016; Costello et al., 2016; Farnsworth & Rosovsky, 1993); a detailed 634 

consideration of these matters is beyond the scope of this review. We note, however, that 635 

fish welfare issues have received much attention (e.g. Sloman et al., 2019), often centred 636 

around the question of whether fish are sentient and can experience pain and suffering 637 

(e.g. Arlinghaus et al., 2007; Braithwaite, 2010; Huntingford et al., 2006, 2007; Rose et 638 

al., 2014) – a challenging question that has a number of implications in a scientific, 639 

ethical, and legal context (Browman et al., 2019). Browman et al. (2019) argue for a 640 

pragmatic approach using objective indicators of stress, health status, and behaviour to 641 

inform about fish well-being. 642 

Irrespective of the scientific debate on fish-welfare, institutional requirements and 643 

legal regulations need to be considered during freshwater fish monitoring. Fish sampling 644 

usually requires specific permits from responsible authorities, particularly when working 645 

with protected species or in protected areas. Depending on the aim and sampling method, 646 

fish monitoring might involve the capture and treatment of fish or might even require 647 
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methods of destructive sampling, i.e. the killing of fish (e.g. Blessing et al., 2010), such 648 

as when individuals require taxonomic identification in the laboratory, including where 649 

voucher specimens are required (Bortolus, 2008; Rocha et al., 2014; Section 7.2). 650 

However, alternative methods of identification should be used to avoid collection of rare 651 

species (Costello et al., 2016; Minteer et al., 2014). Protocols for fieldwork (e.g. Barbour 652 

et al., 1999; Brenkman et al., 2008; CCME, 2011; Cowx et al., 2009; Cowx & Fraser, 653 

2003; Joy et al., 2013) typically provide guidelines on appropriate and least invasive 654 

techniques (e.g. non-capture techniques such as hydroacoustics and eDNA where 655 

applicable, Section 6.4) and are designed to minimize stress or damage caused by 656 

catching, handling, and holding. Developmetal stage and species differences are also 657 

taken into account . The sampling method and design should consider trade-offs of the 658 

potential harm to fish versus the quality of the obtained data in relation to sampling 659 

efficiency. In particular, when capture techniques are applied, potential cumulative 660 

effects should be paid specific attention as fish monitoring involves repeated sampling of 661 

species that can be long-lived (> 20 years) and is often targeted for protected or 662 

endangered species (Benejam et al., 2012). For example, an efficient and common 663 

capture technique such as electrofishing might cause sub-lethal injuries that are often not 664 

externally obvious and possibly fatal (Snyder, 2003). Moreover, ethical issues related to 665 

fish monitoring extend beyond fish-welfare and must also consider impacts on non-target 666 

species and ecosystems or the potential transmission of pests and/or invasive species 667 

(Costello et al., 2016). 668 
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8. Management of monitoring data 669 

For the sustainable success of a monitoring programme and to potentially infer 670 

future changes, policies and procedures that guarantee the quality of data capture, 671 

documentation, and preservation for long-term use is required (Michener, 2015; 672 

Michener & Jones, 2012; Rüegg et al., 2014; Sutter et al., 2015). For example, Vines et 673 

al. (2014) found that the availability of research data declines with article age, with the 674 

probability of finding the dataset decreasing by 17% per year. 675 

Although the importance of integrating data management into long-term 676 

ecological (monitoring) projects has been emphasized repeatedly in previous papers 677 

(Costello & Wieczorek, 2014; Sutter et al., 2015), this is often a neglected area in 678 

freshwater fish studies (but see Moe et al., 2013; Peterson et al., 2013 for some 679 

examples). Thoroughly considering data management to preserve data for long-term use 680 

and accessibility (even beyond the lifetime of the work that generated them) will require 681 

more time and resources to fish monitoring programmes and should be considered at the 682 

earliest stages and accounted for in budgetary plans. 683 

Data management is not limited to ‘what’ was collected (i.e. fish sampling data); 684 

many other data often associated with sampling, such as geospatial information, 685 

multimedia content, voucher specimens, associated environmental variables, and other 686 

biological data, also need to be considered (Costello & Wieczorek, 2014). Furthermore, 687 

to ensure the utility of a dataset, it must be accompanied by metadata, i.e., a detailed 688 

description of who created the data, when and where the data were collected and stored, 689 

how and why the data were generated, processed, and analysed (Michener, 2006). 690 

Data management is a key element in freshwater fish monitoring programmes. A 691 

detailed discussion of challenges and opportunities of data management, as well as 692 
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practices of how it can or should be implemented in fish monitoring is provided 693 

elsewhere (Costello et al., 2013; Costello & Wieczorek, 2014; Michener & Brunt, 2000; 694 

Reichman et al., 2011; Sutter et al., 2015).  695 

9. Conclusions 696 

Given the rapid environmental degradation of the Earth’s freshwater ecosystems and 697 

associated unprecedented rates of biodiversity change, the importance of robust, 698 

replicable, and effective programmes to monitor freshwater fish has never been higher. 699 

Future challenges related to habitat degradation, climate and land use change, and 700 

biological invasions necessitate monitoring programmes that systematically collect 701 

quality data allowing the potential detection of systemic shifts of populations or 702 

communities and thereby improve our understanding of ecosystem responses to 703 

environmental change. There is a pressing need for effective monitoring to 704 

comprehensibly quantify biodiversity change and to inform evidence-based 705 

environmental decision-making. 706 

At a minimum, when establishing a monitoring programme, clear articulation of 707 

the monitoring aim(s) is essential and should address: (i) what should be monitored and 708 

how; (ii) how to allocate effort within time and across sites; (iii) establish criteria for data 709 

reliability; and (iv) identify practical constraints.  710 

Monitoring must also take into account issues related to the detectability of 711 

species, taxonomy, and animal welfare. Additionally, monitoring programmes must 712 

integrate data management practices that ensure the quality of data capture, 713 

documentation, and preservation of information for long-term use and re-use. 714 
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In summary, careful reflection on aims(s) and the extent to which the data 715 

collected will meet these aims will greatly improve the quality and usefulness of 716 

monitoring data. Consistently high monitoring standards will improve data comparability 717 

within and amongst countries and systems. Finally, effective monitoring of freshwater 718 

fish will advance our overall understanding of freshwater ecosystems and contribute to 719 

the preservation and management of freshwater fish diversity while helping mitigate 720 

anthropogenic impacts. 721 

  722 
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Tables 1347 

Table 1. Overview of key questions in fish monitoring programs, associated data needs and applicable sampling methods. 1348 

Sampling method: 1 electrofishing, 2 netting, 3 trapping, 4 telemetry (e.g. acoustic, radio or passive integrated transponder tags), 5 mark-1349 

recapture, 6 environmental DNA, 7 hydroacoustic assessment, 8 angler catch statistics, 9 data-mining, 10 community science. -/orange = no, 1350 

yellow = maybe, green = yes, na not applicable. 1351 
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Population / single-species 
Occupancy (presence only) 1-3,6,8-10 1-3,6,8-10 1-3,6,8-10 1-3,6,8 na 1-3 na na na - - - - - - - 
Presence / Absence 1-3,6 1-3,6 1-3,7 1-3,6 na 1-3 na na na - - - - - - - 
Counts, uncorrected for effort 1-3,7,8 1-3,8 1-3,7,8 1-3,7,8 na 1-3 na na na 1-3,5,7,8 1-3,5,7,8 1-3,7 - - - - 
Abundance estimate 1,2,5,7 1,2 1,2,5,7 1,2,5,7 na 1,2,5 na na na 1,2,5,7 1,2,5,7 1,2,7 - - - - 
Individual attributes 1-5 1-3 1-5 1-5 na 1-5 na na na 1-3,5 1-3,5 1-3 1-3 1-3 1-3 1-3,5 
Community / multi-species 
Occupancy (presence only) 1-3,6 1-3,6 1-3 1-3,6 1-3,6 1-3 1,2,6 1,2,6 - - - - - - - - 
Presence / Absence 1-3,6 1-3,6 1-3 1-3,6 1-3,6 1-3 1,2,6 1,2,6 1,2,6 - - - - - - - 
Counts, uncorrected for effort 1-3 1-3 1-3 1-3 1-3 1-3 1,2 1,2 1,2 1-3,5,7,8 1-3,5,7,8 1-3,7 - - - - 
Abundance estimate 1,2 1,2 1,2 1,2 1,2 1,2,5 1,2 1,2 1,2 1,2,5,7 1,2,5,7 1,2,7 - - - - 
Individual attributes 1-5 1-3 1-5 1-5 1-3 1-5 1,2 1,2 1,2 1-3,5 1-3,5 1-3 1-3 1-3 1-3 1-3,5 
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Figure legends 1352 

Fig. 1. Overview of fish monitoring programmes across global regions (A), 1353 

taxonomic orders (B), and biotope types (C) based on records of the taxonomic order 1354 

Osteichthyes (n = 543) in the Global Population Dynamics Database (GPDD, version 1355 

2.0, released 2010, www.imperial.ac.uk/cpb/gpdd2, NERC Centre for Population 1356 

Biology, Imperial College, 2010). Note: The apparent lack of monitoring in, for 1357 

example, Africa and Australia might reflect a limitation of the database rather than an 1358 

actual lack of monitoring. 1359 

Fig. 2. Illustration of the variation of the number of species (species richness) and 1360 

numerical abundance with sampling effort. The data are for two river sites in Trinidad 1361 

(top – (A) Lower Aripo, bottom – (B) Maracas, sampled four times annually for five 1362 

years. The data are described in Magurran et al. (2018). In each case the species (and 1363 

numerical abundance) accumulation curves are constructed by randomly shuffling the 1364 

temporal order of the samples a 1000 times. The open points represent the median 1365 

value of the randomised accumulation curves; their 95% confidence limits (0.025 and 1366 

0.975 quantiles) are also shown (species richness – left column; numerical abundance 1367 

– right column). 1368 

Fig. 3. The distribution of (A) Northern pike (Esox lucius) and (B) Zander (Sander 1369 

lucioperca) in the UK, between 1986 and 2016, based on data from GBIF 1370 

(www.gbif.org). The R code (R Core Team, 2017) used to construct the figure was 1371 

adopted from the Coding Club 1372 

(https://ourcodingclub.github.io/2017/03/20/seecc.html). 1373 
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