30 research outputs found

    Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives

    Get PDF
    Epidermal growth factor receptor (EGFR) inhibitors are valuable therapeutics in metastatic colorectal cancer (mCRC). Anti-EGFR monoclonal antibodies (MoAbs), such as cetuximab or panitumumab, in combination with chemotherapy are effective treatment options for patients with RAS and BRAF wild-type mCRC. Nevertheless, several issues are still open concerning the optimal use of anti-EGFR drugs in the continuum of care of mCRC. Novel approaches for increasing the efficacy of anti-EGFR therapies include better molecular selection of EGFR-dependent mCRC, intensification of chemotherapy, combination of anti-EGFR MoAbs and immune checkpoint inhibitors, and reintroduction of EGFR blockade or 'rechallenge' in selected patients who have previously responded to anti-EGFR MoAb therapy. An extensive translational research program was conducted in the Cetuximab After Progression in KRAS wIld-type colorectal cancer patients-Gruppo Oncologico dell' Italia Meridionale (CAPRI-GOIM) study with the aims of determining which subgroups of patients could benefit from the continuous inhibition of EGFR, from evaluating the role of liquid biopsy-based and its concordance with tissue-based molecular testing, and from investigating novel potential mechanisms of resistance to anti-EGFR therapies. In this review, we summarize the translational and clinical findings of the CAPRI-GOIM program in the context of the current knowledge of therapeutic strategies and of ongoing research on more appropriate uses of anti-EGFR therapies in RAS and BRAF wild-type mCRC patients

    Cetuximab continuation after first progression in metastatic colorectal cancer (CAPRI-GOIM): A randomized phase II trial of FOLFOX plus cetuximab versus FOLFOX

    Get PDF
    Background: Cetuximab plus chemotherapy is a first-line treatment option in metastatic KRAS and NRAS wild-type colorectal cancer (CRC) patients. No data are currently available on continuing anti-epidermal growth factor receptor (EGFR) therapy beyond progression. Patients and methods: We did this open-label, 1:1 randomized phase II trial at 25 hospitals in Italy to evaluate the efficacy of cetuximab plus 5-fluorouracil, folinic acid and oxaliplatin (FOLFOX) as second-line treatment of KRAS exon 2 wild-type metastatic CRC patients treated in first line with 5-fluorouracil, folinic acid and irinotecan (FOLFIRI) plus cetuximab. Patients received FOLFOX plus cetuximab (arm A) or FOLFOX (arm B). Primary end point was progressionfree survival (PFS). Tumour tissues were assessed by next-generation sequencing (NGS). This report is the final analysis. Results: Between 1 February 2010 and 28 September 2014, 153 patients were randomized (74 in arm A and 79 in arm B). Median PFS was 6.4 [95% confidence interval (CI) 4.7-8.0] versus 4.5 months (95% CI 3.3-5.7); [hazard ratio (HR), 0.81; 95% CI 0.58-1.12; P = 0.19], respectively. NGS was performed in 117/153 (76.5%) cases; 66/117 patients (34 in arm A and 32 in arm B) had KRAS, NRAS, BRAF and PIK3CA wild-type tumours. For these patients, PFS was longer in the FOLFOX plus cetuximab arm [median 6.9 (95% CI 5.5-8.2) versus 5.3 months (95% CI 3.7-6.9); HR, 0.56 (95% CI 0.33-0.94); P = 0.025]. There was a trend in better overall survival: median 23.7 [(95% CI 19.4-28.0) versus 19.8 months (95% CI 14.9-24.7); HR, 0.57 (95% CI 0.32-1.02); P = 0.056]. Conclusions: Continuing cetuximab treatment in combination with chemotherapy is of potential therapeutic efficacy in molecularly selected patients and should be validated in randomized phase III trials

    Triple negative breast cancer: From molecular portrait to therapeutic intervention

    No full text
    Triple negative breast cancer is a subtype of breast cancer that lacks expression of an estrogen receptor (ER), a progesterone receptor (PR), and HER2. It is characterized by its unique molecular profile, aggressive behavior, and distinct pattern of metastasis. Epidemiological studies show a high prevalence of triple negative breast cancer among younger women and those of African descent. Although sensitive to chemotherapy, early relapse is common, and a predilection for visceral metastasis, including brain metastasis, has been described. Gene-expression profiling approaches demonstrated that triple negative breast cancer is a heterogeneous group of diseases composed of different, molecularly distinct subtypes. Although not synonymous, the majority of triple negative breast cancers carry the "basal-like" molecular profile on gene-expression arrays. However, several studies have shown that triple negative breast cancer includes tumors with a non-basal expression profile and, in particular, the "normal-breast," the "multiple marker negative," and the recently identified "claudin-negative" subtypes. Target-based agents, including epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), and poly-ADP-ribose polymerase (PARP) inhibitors, are currently in clinical trials and hold promise in the treatment of this aggressive disease. © 2010 by Begell House, Inc

    Genomic profiling of KRAS/NRAS/BRAF/PIK3CA wild-type metastatic colorectal cancer patients reveals novel mutations in genes potentially associated with resistance to anti-EGFR agents

    No full text
    Previous findings suggest that metastatic colorectal carcinoma (mCRC) patients with KRAS/NRAS/BRAF/PIK3CA wild-type (quadruple-wt) tumors are highly sensitive to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MoAbs). However, additional molecular alterations might be involved in the de novo resistance to these drugs. We performed a comprehensive molecular profiling of 21 quadruple-wt tumors from mCRC patients enrolled in the "Cetuximab After Progression in KRAS wild-type colorectal cancer patients" (CAPRI-GOIM) trial of first line FOLFIRI plus cetuximab. Tumor samples were analyzed with a targeted sequencing panel covering single nucleotide variants (SNVs), insertions/deletions (Indels), copy number variations (CNVs), and gene fusions in 143 cancer-related genes. The analysis revealed in all 21 patients the presence of at least one SNV/Indel and in 10/21 cases (48%) the presence of at least one CNV. Furthermore, 17/21 (81%) patients had co-existing SNVs/Indels in different genes. Quadruple-wt mCRC from patients with the shorter progression free survival (PFS) were enriched with peculiar genetic alterations in KRAS, FBXW7, MAP2K1, and NF1 genes as compared with patients with longer PFS. These data suggest that a wide genetic profiling of quadruple-wt mCRC patients might help to identify novel markers of de novo resistance to anti-EGFR MoAbs

    Optimizing response to gefitinib in the treatment of non-small-cell lung cancer

    No full text
    The epidermal growth factor receptor (EGFR) is expressed in the majority of non- small-cell lung cancer (NSCLC). However, only a restricted subgroup of NSCLC patients respond to treatment with the EGFR tyrosine kinase inhibitor (EGFR TKI) gefitinib. Clinical trials have demonstrated that patients carrying activating mutations of the EGFR significantly benefit from treatment with gefitinib. In particular, mutations of the EGFR TK domain have been shown to increase the sensitivity of the EGFR to exogenous growth factors and, at the same time, to EGFR TKIs such as gefitinib. EGFR mutations are more frequent in patients with particular clinical and pathological features such as female sex, nonsmoker status, adenocarcinoma histology, and East Asian ethnicity. A close correlation was found between EGFR mutations and response to gefitinib in NSCLC patients. More importantly, randomized Phase III studies have shown the superiority of gefitinib compared with chemotherapy in EGFR mutant patients in the first-line setting. In addition, gefitinib showed a good toxicity profile with an incidence of adverse events that was significantly lower compared with chemotherapy. Therefore, gefitinib is a major breakthrough for the management of EGFR mutant NSCLC patients and represents the first step toward personalized treatment of NSCLC. © 2011 Carotenuto et al, publisher and licensee Dove Medical Press Ltd

    Detection of KRAS mutations in colorectal carcinoma patients with an integrated PCR/sequencing and real-time PCR approach

    No full text
    Aims: Patients with metastatic colorectal carcinoma (mCRC) carrying activating mutations of the KRAS gene do not benefit from treatment with anti-EGF receptor monoclonal antibodies. Therefore, KRAS mutation testing of mCRC patients is mandatory in the clinical setting to aid in the choice of appropriate therapy. Materials & methods: We developed a cost-effective approach for the determination of KRAS mutations in codons 12 and 13 in clinical practice based on a sensitive PCR/sequencing technique and the commercially available real-time PCR-based Therascreen® kit (DxS Ltd). Results & conclusion: The PCR/sequencing test was able to detect 10% mutant DNA in a background of wild-type DNA. By using this assay, we determined the mutational status of KRAS in 527 out of 540 (97.6%) formalin-fixed paraffin-embedded tissues from mCRC patients. PCR/sequencing was not conclusive in 13 cases, in which low-intensity peaks suggestive of potential mutations were identified. The DxS assay, which showed a sensitivity of 1%, identified mutations in 11 out of 13 inconclusive cases. Interestingly, five of these 11 cases showed high levels of DNA fragmentation. No significant difference was found in the ability of PCR/sequencing and DxS to identify KRAS mutations within 160 cases with more than 30% tumor cells. However, in 24 samples with less than 30% tumor cells, DxS showed an higher sensitivity. In conclusion, our findings suggest that PCR/sequencing can be used for mutational analysis of the majority of tumor samples that have more than 30% tumor cell content, whereas more sensitive and expensive tests should be reserved for inconclusive cases and for samples with a low amount of tumor cells. © 2010 Future Medicine Ltd

    Heterogeneity of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer and potential effects on therapy in the CAPRI GOIM trial

    Get PDF
    Background: Evidence suggests that metastatic colorectal carcinoma (mCRC) has a high level of intratumor heterogeneity. We carried out a quantitative assessment of tumor heterogeneity for KRAS, NRAS, BRAF and PIK3CA mutations, in order to assess potential clinical implications. Patients and methods: Tumor samples (n = 182) from the CAPRI-GOIM trial of first-line cetuximab + FOLFIRI in KRAS exon-2 wild-type mCRC patients were assessed by next-generation sequencing that allows quantitative assessment of mutant genes. Mutant allelic frequency was normalized for the neoplastic cell content and, assuming that somatic mutations usually affect one allele, the Heterogeneity Score (HS) was calculated by multiplying by 2 the frequency of mutant alleles in neoplastic cells. Therefore, HS virtually corresponds to the fraction of neoplastic cells carrying a specific mutation. Results: The KRAS HS ranged between 12 and 260 with mean value of 87.1 and median value of 84.4, suggesting that in most CRC, the majority of neoplastic cells carry mutant KRAS. Similar findings were observed for NRAS (HS range 35.5-146.7; mean 102.8; median 117.1). In contrast, in BRAF (HS range 17.1-120; mean 54.8; median 54.3) and PIK3CA (HS range 14.3-120; mean 59.5; median 47.3) mutant cases, only a fraction of neoplastic cells seem to carry the mutant allele. The response rate was 70% in KRAS mutant patients with an HS <33 (low KRAS; n = 10) and 45.7% in KRAS HS >33 patients (high KRAS; n = 35); median progression-free survival were 7.97 and 8.37 months, respectively. Low-KRAS tumors had a higher frequency of additional mutations in PIK3CA when compared with high-KRAS (6/10 versus 8/35). Conclusions: KRAS and NRAS mutations are usually present in the majority of neoplastic cells, whereas BRAF and PIK3CA mutations often affect a limited fraction of transformed cells. Resistance to cetuximab in low-KRAS patients might be driven by the complex mutational profile rather than KRAS mutation load

    Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives

    No full text
    Epidermal growth factor receptor (EGFR) inhibitors are valuable therapeutics in metastatic colorectal cancer (mCRC). Anti-EGFR monoclonal antibodies (MoAbs), such as cetuximab or panitumumab, in combination with chemotherapy are effective treatment options for patients with RAS and BRAF wild-type mCRC. Nevertheless, several issues are still open concerning the optimal use of anti-EGFR drugs in the continuum of care of mCRC. Novel approaches for increasing the efficacy of anti-EGFR therapies include better molecular selection of EGFR-dependent mCRC, intensification of chemotherapy, combination of anti-EGFR MoAbs and immune checkpoint inhibitors, and reintroduction of EGFR blockade or ‘rechallenge’ in selected patients who have previously responded to anti-EGFR MoAb therapy. An extensive translational research program was conducted in the Cetuximab After Progression in KRAS wIld-type colorectal cancer patients-Gruppo Oncologico dell' Italia Meridionale (CAPRI-GOIM) study with the aims of determining which subgroups of patients could benefit from the continuous inhibition of EGFR, from evaluating the role of liquid biopsy-based and its concordance with tissue-based molecular testing, and from investigating novel potential mechanisms of resistance to anti-EGFR therapies. In this review, we summarize the translational and clinical findings of the CAPRI-GOIM program in the context of the current knowledge of therapeutic strategies and of ongoing research on more appropriate uses of anti-EGFR therapies in RAS and BRAF wild-type mCRC patients
    corecore