47 research outputs found

    Ecoepidemiology of Trypanosoma cruzi in Texas

    Get PDF
    This dissertation focused on elucidating factors affecting Trypanosoma cruzi transmission in the southern US, using triatomine, canine, and wildlife samples. Collection of triatomine vectors from 2012-2015 included standard entomological sampling, as well as submissions through a citizen science program. The insects were identified to species, dissected, and tested for T. cruzi infection. T. gerstaeckeri and T. sanguisuga were the most abundant species in the collection. Kissing bugs were captured primarily April-October, and peak activity varied by species. A T. cruzi infection prevalence of 58.9% was found in 1,226 triatomines of 6 species, and infection prevalence varied by species. Amplification and sequencing of the TcSC5D gene revealed Triatoma gerstaeckeri was approximately equally infected with TcI and TcIV, and 10 individuals showed mixed TcI/TcIV infections. In contrast, Triatoma sanguisuga was more frequently found infected with TcIV than TcI. Relative abundance of parasite DTUs varied spatially, with both TcI and TcIV co-circulating nearly equally in vectors in central Texas, while TcIV predominated in northern Texas. A study of T. cruzi infection in dogs in south central Texas using paired IFA and Chagas Stat-Pak serological testing showed a seroprevalence of 57.6%. The odds of being seropositive were greater for dogs older than 6 years of age than dogs less than 2 years of age. PCR analyses of blood revealed 26.7% of dogs, including both seronegative and seropositive dogs, harbored parasite DNA in their blood. Sequencing of the TcSC5D gene from blood and tissue samples showed TcI and TcIV were present, including a co-occurrence of both DTUs in an individual dog. Cardiac tissue and blood were collected from wildlife—including raccoons (Procyon lotor), coyotes (Canis latrans), gray foxes (Urocyon cinereoargenteus), and bobcats (Lynx rufus)—from central Texas. PCR analyses found 2 bobcats (14.3%), 12 coyotes (14.3%), 8 foxes (13.8%), and 49 raccoons (70.0%) were positive for T. cruzi in at least one sample (right ventricle, apex, and/or blood clot). Strain typing revealed raccoons infected with DTU TcIV, and a single raccoon with TcI/TcI

    American triatomine species occurrences: updates and novelties in the DataTri database

    Get PDF
    The causative agent of Chagas disease (Trypanosoma cruzi) is transmitted to mammals, including humans, mainly by insect vectors of the subfamily Triatominae (Hemiptera: Reduviidae). Also known as “kissing bugs”, the subfamily currently includes 157 validated species (154 extant and three extinct), in 18 genera and five tribes. Here, we present a subdataset (7852 records) of American triatomine occurrences; an update to the most complete and integrated database available to date at a continental scale. New georeferenced records were obtained from a systematic review of published literature and colleague-provided data. New data correspond to 101 species and 14 genera from 22 American countries between 1935 and 2022. The most important novelties refer to (i) the inclusion of new species, (ii) synonymies and formal transferals of species, and (iii) temporal and geographical species records updates. These data will be a useful contribution to entomological surveillance implicated in Chagas disease.Centro de Estudios Parasitológicos y de Vectore

    Publishing data to support the fight against human vector-borne diseases

    Get PDF
    Vector-borne diseases are responsible for more than 17% of human cases of infectious diseases. In most situations, effective control of debilitating and deadly vector-bone diseases (VBDs), such as malaria, dengue, chikungunya, yellow fever, Zika and Chagas requires up-to-date, robust and comprehensive information on the presence, diversity, ecology, bionomics and geographic spread of the organisms that carry and transmit the infectious agents. Huge gaps exist in the information related to these vectors, creating an essential need for campaigns to mobilise and share data. The publication of data papers is an effective tool for overcoming this challenge. These peer-reviewed articles provide scholarly credit for researchers whose vital work of assembling and publishing well-described, properly-formatted datasets often fails to receive appropriate recognition. To address this, GigaScience 's sister journal GigaByte partnered with the Global Biodiversity Information Facility (GBIF) to publish a series of data papers, with support from the Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organisation (WHO). Here we outline the initial results of this targeted approach to sharing data and describe its importance for controlling VBDs and improving public health

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Photo Quiz

    No full text

    High Trypanosoma cruzi infection prevalence associated with minimal cardiac pathology among wild carnivores in central Texas

    Get PDF
    Infection with the zoonotic vector-borne protozoal parasite Trypanosoma cruzi causes Chagas disease in humans and dogs throughout the Americas. Despite the recognized importance of various wildlife species for perpetuating Trypanosoma cruzi in nature, relatively little is known about the development of cardiac disease in infected wildlife. Using a cross-sectional study design, we collected cardiac tissue and blood from hunter-donated wildlife carcasses- including raccoon (Procyon lotor), coyote (Canis latrans), gray fox (Urocyon cinereoargenteus), and bobcat (Lynx rufus) – from central Texas, a region with established populations of infected triatomine vectors and increasing diagnoses of Chagas disease in domestic dogs. Based on PCR analysis, we found that 2 bobcats (14.3%), 12 coyotes (14.3%), 8 foxes (13.8%), and 49 raccoons (70.0%) were positive for T. cruzi in at least one sample (right ventricle, apex, and/or blood clot). Although a histologic survey of right ventricles showed that 21.1% of 19 PCR-positive hearts were characterized by mild lymphoplasmocytic infiltration, no other lesions and no amastigotes were observed in any histologic section. DNA sequencing of the TcSC5D gene revealed that raccoons were infected with T. cruzi strain TcIV, and a single racoon harbored a TcI/TcIV mixed infection. Relative to other wildlife species tested here, our data suggest that raccoons may be important reservoirs of TcIV in Texas and a source of infection for indigenous triatomine bugs. The overall high level of infection in this wildlife community likely reflects high levels of vector contact, including ingestion of bugs. Although the relationship between the sylvatic cycle of T. cruzi transmission and human disease risk in the United States has yet to be defined, our data suggest that hunters and wildlife professionals should take precautions to avoid direct contact with potentially infected wildlife tissues
    corecore