38 research outputs found

    Temporal SNR characteristics in segmented 3D-EPI at 7T.

    Get PDF
    Three-dimensional segmented echo planar imaging (3D-EPI) is a promising approach for high-resolution functional magnetic resonance imaging, as it provides an increased signal-to-noise ratio (SNR) at similar temporal resolution to traditional multislice 2D-EPI readouts. Recently, the 3D-EPI technique has become more frequently used and it is important to better understand its implications for fMRI. In this study, the temporal SNR characteristics of 3D-EPI with varying numbers of segments are studied. It is shown that, in humans, the temporal variance increases with the number of segments used to form the EPI acquisition and that for segmented acquisitions, the maximum available temporal SNR is reduced compared to single shot acquisitions. This reduction with increased segmentation is not found in phantom data and thus likely due to physiological processes. When operating in the thermal noise dominated regime, fMRI experiments with a motor task revealed that the 3D variant outperforms the 2D-EPI in terms of temporal SNR and sensitivity to detect activated brain regions. Thus, the theoretical SNR advantage of a segmented 3D-EPI sequence for fMRI only exists in a low SNR situation. However, other advantages of 3D-EPI, such as the application of parallel imaging techniques in two dimensions and the low specific absorption rate requirements, may encourage the use of the 3D-EPI sequence for fMRI in situations with higher SNR

    Imagerie par résonance magnétique à haute résolution temporelle: Développement d'une méthode d'acquisition parallèle tridimensionnelle pour l'imagerie fonctionnelle cérébrale

    Get PDF
    Echo Planar Imaging is widely used to perform data acquisition in functional neuroimaging. This sequence allows the acquisition of a set of about 30 slices, covering the whole brain, at a spatial resolution ranging from 2 to 4 mm, and a temporal resolution ranging from 1 to 2 s. It is thus well adapted to the mapping of activated brain areas but does not allow precise study of the brain dynamics. Moreover, temporal interpolation is needed in order to correct for inter-slices delays and 2D acquisition is subject to vascular inflow artifacts. To improve the estimation of the hemodynamic response functions associated with activation, this thesis aimed at developping a 3D high temporal resolution acquisition method. To do so, Echo Volume Imaging was combined with reduced field-of-view acquisition and parallel imaging. Indeed, EVI allows the acquisition of a whole volume in Fourier space following a single excitation, but it requires very long echo trains. Parallel imaging and field-of-view reduction are used to reduce the echo train durations by a factor of 4, which allows the acquisition of a 3D brain volume with limited susceptibility-induced distortions and signal losses, in 200 ms. All imaging parameters have been optimized in order to reduce echo train durations and to maximize SNR, so that cerebral activation can be detected with a high level of confidence. Robust detection of brain activation was demonstrated with both visual and auditory paradigms. High temporal resolution hemodynamic response functions could be estimated through selective averaging of the response to the different trials of the stimulation. To further improve SNR, the matrix inversions required in parallel reconstruction were regularized, and the impact of the level of regularization on activation detection was investigated. Eventually, potential applications of parallel EVI such as the study of non-stationary effects in the BOLD response.La séquence d'Imagerie Echo Planaire est largement utilisée pour l'acquisition des séries temporelles d'images nécessaires aux études d'imagerie fonctionnelle cérébrale. Cette séquence permet d'acquérir une trentaine de coupes couvrant le cerveau entier, avec une résolution spatiale de 2 à 4 mm et une résolution temporelle de 1 à 2 s. Elle est donc bien adaptée à l'analyse exploratoire des aires cérébrales activées, mais ne permet pas d'étudier précisément la dynamique temporelle de l'activation. Par ailleurs, une interpolation temporelle des données est nécessaire pour tenir compte des délais inter-coupes et l'acquisition 2D est source d'artéfacts d'origine vasculaire, en particulier à bas champs magnétiques. Afin d'améliorer l'estimation de la réponse cérébrale, cette thèse a eu pour objet le développement d'une séquence d'acquisition 3D à haute résolution temporelle, à 1.5T. Pour cela, la séquence d'Imagerie Echo Volume (EVI) a été combinée avec l'utilisation de l'imagerie parallèle et l'acquisition de champs de vue réduits. L'EVI permet l'acquisition d'un volume de l'espace de Fourier après une unique impulsion d'excitation, mais requiert des trains d'échos très longs. L'imagerie parallèle et la réduction des champs de vue permettent de réduire la durée des trains d'échos et de réaliser l'acquisition d'un volume de cerveau, avec peu de distorsions géométriques et de pertes de signal, en 200 ms. Tous les paramètres d'acquisition ont été optimisés afin de maximiser le rapport signal sur bruit de l'EVI localisé parallèle et de pouvoir détecter les activations cérébrales de manière robuste. La détection des activations cérébrales a été mise en évidence avec des paradigmes de stimulation visuels et auditifs, et des fonctions de réponses hémodynamiques à haute résolution temporelle ont pu être extraites. Afin d'améliorer le rapport signal sur bruit, les inversions matricielles nécessaires à la reconstruction parallèle ont été régularisées et l'influence du niveau de régularisation sur la détection des activations a été étudiée. Finalement, quelques applications potentielles de l'EVI parallèle ont été expérimentées, telles que l'étude des non-stationnarités de la réponse BOLD

    Imagerie par résonance magnétique à haute résolution temporelle (développement d'une méthode d'acquisition parallèle tridimensionnelle pour l'imagerie fonctionnelle cérébrale)

    No full text
    La séquence d'Imagerie Écho Planaire est largement utilisée pour l'acquisition des séries temporelles nécessaires aux études d'IRM fonctionnelle cérébrale. Cette séquence permet d'imager le cerveau entier, avec une résolution spatiale de 2 à 4 mm et une résolution temporelle de 1 à 2 s. Elle est donc bien adaptée à l'analyse exploratoire de l activité cérébrale, mais ne permet pas d'étudier précisément sa dynamique temporelle. Afin d'améliorer l'estimation de la réponse cérébrale et d éviter les artéfacts dus à l acquisition 2D, cette thèse a eu pour objet le développement d'une méthode d'acquisition 3D à haute résolution temporelle. Pour cela, la séquence d'Imagerie Écho Volume (EVI) a été combinée avec l'acquisition parallèle et la réduction du champ de vue. L'EVI permet l'acquisition d'un volume après une unique impulsion d'excitation, mais requiert des trains d'échos très longs. L'imagerie parallèle et la réduction des champs de vue permettent de réduire la durée des trains d'échos et de réaliser l'acquisition d'un volume, avec peu de distorsions et de pertes de signal, en 200ms. Tous les paramètres d'acquisition ont été optimisés afin de maximiser le rapport signal sur bruit de la méthode et de détecter les activations cérébrales de manière robuste. La détection des activations a été mise en évidence avec différents paradigmes de stimulation, et des fonctions de réponses hémodynamiques à haute résolution temporelle ont pu être calculées. Afin d'améliorer la stabilité temporelle, les inversions matricielles nécessaires à la reconstruction parallèle ont été régularisées et l'influence du niveau de régularisation sur la détection des activations a été étudiée.Echo Planar Imaging is widely used to perform data acquisition in functional neuroimaging. This sequence allows the acquisition of a set of about 30 slices, covering the whole brain, at a spatial resolution ranging from 2 to 4 mm, and a temporal resolution ranging from 1 to 2 s. It is thus well adapted to the mapping of activated brain areas but does not allow precise study of the brain dynamics. To improve the estimation of the hemodynamic response functions associated with activation and avoid artifacts due to 2D acquisition, this thesis aimed at developping a 3D high temporal resolution acquisition method. To do so, Echo Volume Imaging was combined with reduced field-of-view acquisition and parallel imaging. Indeed, EVI allows the acquisition of a whole volume following a single excitation, but it requires very long echo trains. Parallel imaging and field-of-view reduction are used to reduce the echo train durations, which allows the acquisition of a 3D volume with limited susceptibility-induced distortions and signal losses, in 200ms. All imaging parameter have been optimized in order to reduce echo train durations and to maximize SNR, so that cerebral activations can be detected with a high level of confidence. Robust detection of brain activation was demonstrated with several stimulation paradigms and high temporal resolution hemodynamic response functions have been estimated. To further improve SNR, the matrix inversions required in parallel reconstruction were regularized, and the impact of the level of regularization on activation detection was investigated.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    RF heating reduction associated to an MR endoluminal coil at 3T

    No full text
    International audiencePurpose/Introduction: MR endoluminal coils increase the Signal-to-Noise Ratio (SNR), allowing better distinction of the layers of the bowel: a crucial criterion for diagnosis of bowel diseases [1]. But they present a risk of burn for the patient. Radio Frequency (RF) electric field may cause important heating due to local concentrations of the E-field along the conductive cable and coil [2]. In this paper, the efficiency of RF traps toward heating suppression was assessed. The particular case of a 225 cm long receiver cable was with a cable path configuration tested to be in the worst case scenario

    A susceptibility matched endorectal coil design suited for the MRS examination of the rectal wall

    No full text
    International audienceA susceptibility matched endorectal coil was tested and compared against a classical endorectal coil design. For different phantom angulations, it enabled a significant decrease (~30%) of the FWHM of spectra acquired on in vitro NMR tubes. These promising results and the restricted FWHM observed suggest the interest of this new coil for the acquisition of in vivo spectra especially for the characterization of the colorectal cancer

    Assessment of miniaturized RF traps for RF heating reduction and reception coil sensitivity profile restoration

    No full text
    International audienceTo reduce RF-induced heating, standard passive RF traps are known to be efficient. Novel miniaturized RF traps are as efficient as standard ones for this purpose. Furthermore, it is demonstrated that RF traps enable a restoration of the signal intensity pattern of the coil. It is thus possible to perform a MR endoscopy of deeper regions of the bowel (after left colonic flexure for instance) since the coaxial cable incorporating miniaturized RF traps now may be inserted through the rectum with limited discomfort for the patient

    Distribution of RF Traps to Reduce RF Heating with Endoluminal Coils: An Experimental Study

    No full text
    International audienceThere are many techniques considered in the literature to reduce RF heating. A small number of passive RF traps incorporated in the reception cable present excellent results in the case of an endoluminal coil at 3T. The historical design of RF trap such as LC filters is efficient. Due to the distribution of induced currents in the cable, a close attention should be paid to the location of the RF traps along the cable. Optimal placememt can also narrow down the number of RF traps to a minimum
    corecore