251 research outputs found
Higher Curvature Gravity from Entanglement in Conformal Field Theories
By generalizing different recent works to the context of higher curvature
gravity, we provide a unifying framework for three related results: (i) If an
asymptotically AdS spacetime computes the entanglement entropies of ball-shaped
regions in a CFT using a generalized Ryu-Takayanagi formula up to second order
in state deformations around the vacuum, then the spacetime satisfies the
correct gravitational equations of motion up to second order around AdS; (ii)
The holographic dual of entanglement entropy in higher curvature theories of
gravity is given by Wald entropy plus a particular correction term involving
extrinsic curvatures; (iii) CFT relative entropy is dual to gravitational
canonical energy (also in higher curvature theories of gravity). Especially for
the second point, our novel derivation of this previously known statement does
not involve the Euclidean replica trick.Comment: 12 pages, 2 figure
Nonlinear Gravity from Entanglement in Conformal Field Theories
In this paper, we demonstrate the emergence of nonlinear gravitational
equations directly from the physics of a broad class of conformal field
theories. We consider CFT excited states defined by adding sources for scalar
primary or stress tensor operators to the Euclidean path integral defining the
vacuum state. For these states, we show that up to second order in the sources,
the entanglement entropy for all ball-shaped regions can always be represented
geometrically (via the Ryu-Takayanagi formula) by an asymptotically AdS
geometry. We show that such a geometry necessarily satisfies Einstein's
equations perturbatively up to second order, with a stress energy tensor
arising from matter fields associated with the sourced primary operators. We
make no assumptions about AdS/CFT duality, so our work serves as both a
consistency check for the AdS/CFT correspondence and a direct demonstration
that spacetime and gravitational physics can emerge from the description of
entanglement in conformal field theories.Comment: 55 pages, 8 figure
Exciting dark matter in the galactic center
We reconsider the proposal of excited dark matter (DM) as an explanation for
excess 511 keV gamma rays from positrons in the galactic center. We
quantitatively compute the cross section for DM annihilation to nearby excited
states, mediated by exchange of a new light gauge boson with off-diagonal
couplings to the DM states. In models where both excited states must be heavy
enough to decay into e^+ e^- and the ground state, the predicted rate of
positron production is never large enough to agree with observations, unless
one makes extreme assumptions about the local circular velocity in the Milky
Way, or alternatively if there exists a metastable population of DM states
which can be excited through a mass gap of less than 650 keV, before decaying
into electrons and positrons.Comment: Dedicated to the memory of Lev Kofman; 16 pages, 9 figures; v3 added
refs, minor changes, accepted to PR
In Vivo rapid delivery of vasopressin from an implantable drug delivery micro-electro-mechanical device
A miniaturized implantable rapid drug delivery device based on micro-electro-mechanical-systems technology was recently developed and characterized. This device is intended to address acute conditions in high-risk subjects. This work provides an in vivo proof-of-concept for the device in a rabbit model, by releasing a physiologically active dose of vasopressin, a vasoconstrictor. The devices were implanted subcutaneously and activated to rapidly release vasopressin, with monitoring of mean arterial pressure and plasma levels.Device releases showed a rapid and measurable effect on mean arterial pressure as well as a continuous diffusion of vasopressin into the bloodstream, consistent with a depot effect. Plasma levels in rabbits receiving vasopressin with the device rose monotonically to 24.4 ± 2.9 ng/mL after one hour. Bioavailability after one hour was calculated to be 6.2 ± 2.8 % (mean ± s.d.).A new modality for rapid and controlled drug delivery has been developed. The device can be used as a new implantable device controlled by medical algorithms (based on heart rate or mean arterial pressure, for example) for autonomous operation in high-risk populations that require immediate ambulatory intervention.Keywords: Subcutaneous drug delivery; vasopressin; MEMS; rabbit; bioavailability
In Vivo rapid delivery of vasopressin from an implantable drug delivery micro-electro-mechanical device
A miniaturized implantable rapid drug delivery device based on micro-electro-mechanical-systems technology was recently developed and characterized. This device is intended to address acute conditions in high-risk subjects. This work provides an in vivo proof-of-concept for the device in a rabbit model, by releasing a physiologically active dose of vasopressin, a vasoconstrictor. The devices were implanted subcutaneously and activated to rapidly release vasopressin, with monitoring of mean arterial pressure and plasma levels.Device releases showed a rapid and measurable effect on mean arterial pressure as well as a continuous diffusion of vasopressin into the bloodstream, consistent with a depot effect. Plasma levels in rabbits receiving vasopressin with the device rose monotonically to 24.4 ± 2.9 ng/mL after one hour. Bioavailability after one hour was calculated to be 6.2 ± 2.8 % (mean ± s.d.).A new modality for rapid and controlled drug delivery has been developed. The device can be used as a new implantable device controlled by medical algorithms (based on heart rate or mean arterial pressure, for example) for autonomous operation in high-risk populations that require immediate ambulatory intervention.Keywords: Subcutaneous drug delivery; vasopressin; MEMS; rabbit; bioavailability
The Development of Biophotovoltaic Systems for Power Generation and Biological Analysis.
Biophotovoltaic systems (BPVs) resemble microbial fuel cells, but utilise oxygenic photosynthetic microorganisms associated with an anode to generate an extracellular electrical current, which is stimulated by illumination. Study and exploitation of BPVs have come a long way over the last few decades, having benefited from several generations of electrode development and improvements in wiring schemes. Power densities of up to 0.5 W m-2 and the powering of small electrical devices such as a digital clock have been reported. Improvements in standardisation have meant that this biophotoelectrochemical phenomenon can be further exploited to address biological questions relating to the organisms. Here, we aim to provide both biologists and electrochemists with a review of the progress of BPV development with a focus on biological materials, electrode design and interfacial wiring considerations, and propose steps for driving the field forward
Three-dimensional jamming and flows of soft glassy materials
Various disordered dense systems such as foams, gels, emulsions and colloidal
suspensions, exhibit a jamming transition from a liquid state (they flow) to a
solid state below a yield stress. Their structure, thoroughly studied with
powerful means of 3D characterization, exhibits some analogy with that of
glasses which led to call them soft glassy materials. However, despite its
importance for geophysical and industrial applications, their rheological
behavior, and its microscopic origin, is still poorly known, in particular
because of its nonlinear nature. Here we show from two original experiments
that a simple 3D continuum description of the behaviour of soft glassy
materials can be built. We first show that when a flow is imposed in some
direction there is no yield resistance to a secondary flow: these systems are
always unjammed simultaneously in all directions of space. The 3D jamming
criterion appears to be the plasticity criterion encountered in most solids. We
also find that they behave as simple liquids in the direction orthogonal to
that of the main flow; their viscosity is inversely proportional to the main
flow shear rate, as a signature of shear-induced structural relaxation, in
close similarity with the structural relaxations driven by temperature and
density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm
Requirement of the CXXC Motif of Novel Francisella Infectivity Potentiator Protein B FipB, and FipA in Virulence of F. tularensis subsp. tularensis
The lipoprotein encoded by the Francisella tularensis subsp. tularensis locus FTT1103 is essential for virulence; an FTT1103 deletion mutant is defective in uptake and intracellular survival, and mice survive high dose challenges of greater than 108 bacteria. This protein has two conserved domains; one is found in a class of virulence proteins called macrophage infectivity potentiator (Mip) proteins, and the other in oxidoreductase Disulfide Bond formation protein A (DsbA)-related proteins. We have designated the protein encoded by FTT1103 as FipB for Francisella infectivity potentiator protein B. The locus FTT1102 (fipA), which is upstream of fipB, also has similarity to same conserved Mip domain. Deletion and site-specific mutants of fipA and fipB were constructed in the Schu S4 strain, and characterized with respect to intracellular replication and in vivo virulence. A nonpolar fipA mutant demonstrated reduced survival in host cells, but was only slightly attenuated in vivo. Although FipB protein was present in a fipA mutant, the abundance of the three isoforms of FipB was altered, suggesting that FipA has a role in post-translational modification of FipB. Similar to many DsbA homologues, FipB contains a cysteine-any amino acid-any amino acid-cysteine (CXXC) motif. This motif was found to be important for FipB's role in virulence; a deletion mutant complemented with a gene encoding a FipB protein in which the first cysteine was changed to an alanine residue (AXXC) failed to restore intracellular survival or in vivo virulence. Complementation with a gene that encoded a CXXA containing FipB protein was significantly defective in intracellular growth; however, only slightly attenuated in vivo
Pregnancy and Mental Health of Young Homeless Women
Pregnancy rates among women in the U.S. who are homeless are much higher than rates among women who are housed (Greene & Ringwalt, 1998). Yet little research has addressed mental health, risk and resilience among young mothers who are homeless. This study utilizes a sample of women from the Midwest Longitudinal Study of Homeless Adolescents (MLSHA) to investigate pregnancy and motherhood over three years among unaccompanied homeless young mothers. Our data are supplemented by in-depth interviews with a subset of these women. Results show that almost half of sexually active young women (n = 222, μ age = 17.2) had been pregnant at baseline (46.4%), and among the longitudinal subsample of 171 women (μ age = 17.2), almost 70.0% had been pregnant by the end of the study. Among young mothers who are homeless, only half reported that they helped to care for their children consistently over time, and one-fifth of the women reported never seeing their children. Of the young women with children in their care at the last interview of the study (Wave 13), almost one-third met criteria for lifetime major depressive episode (MDE), lifetime posttraumatic stress disorder (PTSD), and lifetime drug abuse, and onehalf met criteria for lifetime antisocial personality disorder (APD). Twelve-month diagnoses are also reported. The impacts of homelessness on maternal and child outcomes are discussed, including the implications for practice, policy, and research
- …