21 research outputs found

    Protein Kinase C Iota Regulates Pancreatic Acinar-to-Ductal Metaplasia

    Get PDF
    Pancreatic acinar-to-ductal metaplasia (ADM) is associated with an increased risk of pancreatic cancer and is considered a precursor of pancreatic ductal adenocarcinoma. Transgenic expression of transforming growth factor alpha (TGF-α) or K-rasG12D in mouse pancreatic epithelium induces ADM in vivo. Protein kinase C iota (PKCι) is highly expressed in human pancreatic cancer and is required for the transformed growth and tumorigenesis of pancreatic cancer cells. In this study, PKCι expression was assessed in a mouse model of K-rasG12D-induced pancreatic ADM and pancreatic cancer. The ability of K-rasG12D to induce pancreatic ADM in explant culture, and the requirement for PKCι, was investigated. PKCι is elevated in human and mouse pancreatic ADM and intraepithelial neoplastic lesions in vivo. We demonstrate that K-rasG12D is sufficient to induce pancreatic ADM in explant culture, exhibiting many of the same morphologic and biochemical alterations observed in TGF-α-induced ADM, including a dependence on Notch activation. PKCι is highly expressed in both TGF-α- and K-rasG12D-induced pancreatic ADM and inhibition of PKCι significantly reduces TGF-α- and K-rasG12D-mediated ADM. Inhibition of PKCι suppresses K-rasG12D–induced MMP-7 expression and Notch activation, and exogenous MMP-7 restores K-rasG12D–mediated ADM in PKCι-depleted cells, implicating a K-rasG12D-PKCι-MMP-7 signaling axis that likely induces ADM through Notch activation. Our results indicate that PKCι is an early marker of pancreatic neoplasia and suggest that PKCι is a potential downstream target of K-rasG12D in pancreatic ductal metaplasia in vivo

    A model for the compressible, viscoelastic behavior of human amnion addressing tissue variability through a single parameter

    Get PDF
    A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time- dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    Phenytoin

    No full text

    Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer

    Get PDF
    Oncolytic strains of vaccinia virus are currently in clinical development with clear evidence of safety and promising signs of efficacy. Addition of therapeutic genes to the viral genome may increase the therapeutic efficacy of vaccinia. We evaluated the therapeutic potential of vaccinia virus expressing the sodium iodide symporter (NIS) in prostate cancer models, combining oncolysis, external beam radiotherapy and NIS-mediated radioiodide therapy. The NIS-expressing vaccinia virus (VV-NIS), GLV-1h153, was tested in in vitro analyzes of viral cell killing, combination with radiotherapy, NIS expression, cellular radioiodide uptake and apoptotic cell death in PC3, DU145, LNCaP and WPMY-1 human prostate cell lines. In vivo experiments were carried out in PC3 xenografts in CD1 nude mice to assess NIS expression and tumor radioiodide uptake. In addition, the therapeutic benefit of radioiodide treatment in combination with viral oncolysis and external beam radiotherapy was measured. In vitro viral cell killing of prostate cancers was dose-and time-dependent and was through apoptotic mechanisms. Importantly, combined virus therapy and iodizing radiation did not adversely affect oncolysis. NIS gene expression in infected cells was functional and mediated uptake of radioiodide both in vitro and in vivo. Therapy experiments with both xenograft and immunocompetent Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mouse models showed that the addition of radioiodide to VV-NIS-infected tumors was more effective than each single-agent therapy, restricting tumor growth and increasing survival. In conclusion, VV-NIS is effective in prostate cancer models. This treatment modality would be an attractive complement to existing clinical radiotherapy practice
    corecore