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Abstract A viscoelastic, compressible model is pro-

posed to rationalize the recently reported response of

human amnion in multiaxial relaxation and creep ex-

periments. The theory includes two viscoelastic contri-

butions responsible for the short- and long-term time-

dependent response of the material. These two con-

tributions can be related to physical processes: water

flow through the tissue and dissipative characteristics

of the collagen fibers, respectively. An accurate agree-

ment of the model with the mean tension and kin-

ematic response of amnion in uniaxial relaxation tests

was achieved. By variation of a single linear factor that

accounts for the variability among tissue samples, the

model provides very sound predictions not only of the

uniaxial relaxation but also of the uniaxial creep and

strip-biaxial relaxation behavior of individual samples.

This suggests that a wide range of viscoelastic behaviors

due to patient-specific variations in tissue composition
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can be represented by the model without the need of

recalibration and parameter identification.
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1 Introduction

The formulation and validation of a suitable constitutive

model for the human amnion is important to better pre-

dict complex in vivo loading conditions and represents

the first step towards the development of numerical sim-

ulation methods to address clinically relevant questions

conditions as well as to analyze in detail the results of

mechanical experiments for the determination of tissue
strength and fracture properties. Such a model repres-

ents the first step towards the development of numerical

simulation tools to address clinical questions, as for ex-

ample potential structural weakening caused by pren-

atal surgery [Devlieger et al, 2006; Beck et al, 2012] or

increased rupture risk associated with cervical opening

or pelvic floor laxity [Menon et al, 2015].

Amnion, the inner of the fetal membranes (FMs),

is a thin and strong tissue in contact with the amni-

otic fluid [Bourne, 1962; Mauri et al, 2013]. In terms of

mechanical properties it is considered to be the determ-

ining structure [Oxlund et al, 1990; Oyen et al, 2006]

that surrounds and protects the fetus during gestation.

Recently, a comprehensive experimental campaign has

been performed to investigate the time- and history-

dependent behavior of the human amnion [Mauri et al,

2015c; Perrini et al, 2015]. The results of these uniaxial

and biaxial experiments confirmed the substantial re-

laxation of the tension at constant strain reported for

FM tissues in previous studies [Lavery and Miller, 1977;
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Oyen et al, 2004, 2005] along with the limited strain ac-

cumulation in creep experiments also observed in other

soft tissues [Anssari-Benam et al, 2012; Grashow et al,

2006; Hingorani et al, 2004; Thornton et al, 2001]. New

microscopic insight [Mauri et al, 2015b] revealed sub-

stantial thickness changes in uniaxial and biaxial exten-

sion which, together with the large lateral contraction

observed in uniaxial loading [Bürzle and Mazza, 2013;

Mauri et al, 2015c], imply that the human amnion is

able to considerably change its volume by changing its

water content. Based on a combination of macro- and

microscopic results, it was hypothesized in Mauri et al

[2015c] that the relaxation behavior can be separated

into a short-term phase, during which the tissue volume

is reduced, water is expelled and fibers reorient, and a

long-term phase, which is characterized by the dissipat-

ive, time-dependent behavior of the fibers themselves.

Accordingly, a suitable modeling framework is re-

quired in order to capture these compressible and time-

dependent characteristics. Only very few contributions

have concerned themselves with models of the time-

dependent behavior of FM tissue. A quasi-linear vis-

coelastic model was considered and found inadequate

for amnion by Oyen et al [2005]. Prévost [2006] sugges-

ted a formulation based on a multiplicative decompos-

ition of the in-plane deformation gradient into elastic

and viscous parts, which was, however, not further stud-

ied or compared to experimental data. In general, a

large number of viscoelastic theories have been pro-

posed or customized for various soft tissues [see e.g.

Ehret, 2011], including the mentioned quasilinear [see

Fung, 1993] and fractional order viscoelastic models

[e.g. Doehring et al, 2005], explicitly rate-dependent

theories [e.g. Limbert and Middleton, 2004] or mod-

els with tensor or scalar valued strain- or stress-like

internal variables [e.g. Holzapfel, 1996; Nguyen et al,

2007; Ehret and Itskov, 2009]. Time-dependent beha-

vior is also intrinsic to fluid-saturated porous media,

and the according multiphasic theory has been used to

rationalize the mechanics of soft tissues such as tendon,

cartilage or intervertebral disc tissues [Ateshian et al,

2004; Atkinson et al, 1997; Ehlers et al, 2006; Jacobs

et al, 2014].

The soft tissue model proposed by Rubin and Bod-

ner [2002] provides a versatile framework [Helfenstein

et al, 2010] to represent the mechanical behavior of col-

lagenous tissues [Mazza et al, 2005; Barbarino et al,

2011; Bürzle and Mazza, 2013; Weickenmeier and Jab-

areen, 2014; Flynn and Rubin, 2014; Safadi and Ru-

bin, 2014] offering the possibility to include dissipative,

inelastic characteristics. In application to FM tissues,

Jabareen et al [2009] used an elastic isotropic formu-

lation of the Rubin-Bodner (RB) model to represent

the uniaxial response of the amnion. An orthotropic

extension with representative fiber families distributed

within the membrane plane was proposed by Bürzle and

Mazza [2013] to capture the response of amnion under

uniaxial and biaxial loads [Bürzle et al, 2013], and the

extremely large transverse contraction in uniaxial ten-

sion tests [Bürzle and Mazza, 2013]. In the present con-

tribution, a compressible, time-dependent formulation

of the RB model is used to rationalize the time depend-

ent behavior of the amnion. The model is calibrated

from uniaxial relaxation experiments and validated by

comparison with strip-biaxial relaxation as well as uni-

and equibiaxial creep tests [Mauri et al, 2015c].

Human biological tissues are characterized by large

intra- and inter-subject variability [e.g. Bürzle et al,

2013; Pierce et al, 2015], and representative mean curves

of the tissue are usually obtained by testing of, and av-

eraging over a large number of specimens. This variabil-

ity in human tissues is not an experimental artifact, but

rather an intrinsic and integral property of the mater-

ial, viz. the healthy human tissue. Material parameters

describing the mechanical characteristics of soft tissues

such as FM [Jabareen et al, 2009; Bürzle et al, 2013],

aorta [Schriefl et al, 2015; Reeps et al, 2013] and liver

tissue [Mazza et al, 2007; Yarpuzlu et al, 2014] have

been correlated with histological or biochemical proper-

ties to understand effects arising from tissue heterogen-

eity. In the present contribution, we propose a straight-

forward modeling approach that includes the charac-

teristic human variability arising from the differences

in tissue by a single scalar “patient- or region-specific”

parameter, and a set of general “tissue-specific” para-

meters that holds for all tested samples from different

membranes.

2 Constitutive Model

2.1 Kinematic framework

Let F = Gradχ(X , t) denote the deformation gradient

of the motion χ(X , t) of a particle with position X of a

material body in the reference state at time t = t0. Here

and henceforth, the dependence of kinematic quantities

on space and time will not be explicitly indicated unless

needed to distinguish between different events in time.

The volume change of infinitesimal volume elements at

(X , t) is expressed by J = detF, l = ḞF−1 denotes

the spacial velocity gradient d = (l + lT)/2 is the sym-

metric rate of deformation tensor and the left Cauchy-

Green tensor reads b = FFT. The collagen structure in

the tissue is represented by N representative families of

fibers whose axes are aligned with the unit vectors M i,
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i = 1, 2, ..., N , in the reference state. An affine trans-

formation maps them onto the set of non-unit vectors

m i = FM i with length λf,i = |m i|. Note that colla-

gen fibers are not expected to deform affinely with the

extracellular matrix; thus the families of fibers intro-

duced in these models represent the collagen network

in a phenomenological sense. The temporal change of b

and the vectors m i is given by the material time deriv-

atives [cf. e.g. Rubin, 1996; Rubin and Bodner, 2002;

Haupt, 2002]

ḃ = lb + blT, ṁ i = lm i, i = 1, 2, .., N. (1)

Due to dissipative mechanisms, the strains associated

with storage of elastic energy in the matrix and fibers,

expressed by be and m i
e, respectively, may differ from

the total deformations. In line with the theory outlined

in [Rubin, 1994a,b, 1996; Rubin and Bodner, 2002] the

material rates of the kinematic quantities relating to

these elastic deformations are expressed in a general

form by

ḃe = lbe + bel
T − a,

ṁ i
e = lm i

e − a i, i = 1, 2, ..., N, (2)

where the tensor a and vectors a i specify the rates of

the inelastic deformations [cf. Rubin and Bodner, 2002].

Integration of the rate equations (2) finally defines the

history of be and mi
e over time. The terms a and ai

can be specified in order to incorporate a specific vis-

coelastic behavior. While in the original model as well

as recent extensions [Rubin and Bodner, 2002; Weick-

enmeier and Jabareen, 2014] it was assumed that dis-

sipation occurs due to viscoplastic isochoric deforma-

tions of the isotropic matrix material, the model presen-

ted herein takes into account dissipative mechanisms

arising from viscoelasticity associated with the volu-

metric deformation of the matrix and the deformation

of the fibers. This is in agreement with the observa-

tions in our recent study [Mauri et al, 2015c] that the

temporal decay of tension in relaxation tests can be sep-

arated into a short and a long-term phase, which were

attributed to tissue volume reduction and dissipative

fiber behavior, respectively.

2.2 Dissipative volumetric and fiber deformations

Applying the multiplicative decomposition of the de-

formation gradient F = J1/3F̄ [Flory, 1961] into volu-

metric and volume preserving parts, the material time

derivative of the left Cauchy-Green tensor (1)1 has the

decoupled form

ḃ = lb + blT =
˙

J2/3b̄ =
2

3
J−1/3J̇ b̄ + J2/3 ˙̄b. (3)

The two material time derivatives in (3) calculate as

J̇ =
J

2
b−1 : ḃ = J trd, ˙̄b = lb̄ + b̄lT − 2

3
(trd)b̄, (4)

where the second one (4)2 ensures that b̄ remains unim-

odular during the evolution [Rubin, 1994a]. Eqns. ((3)

and (4)) suggest that dissipation associated with volu-

metric and isochoric deformations can be considered

separately. As stated in the previous section, we attrib-

ute the dissipation in the matrix exclusively to volumet-

ric changes. This assumption implies that the material

rate of the isochoric elastic left Cauchy-Green tensor

remains unaltered from (4)2 so that

˙̄be = ˙̄b. (5)

Since we assume the dissipation in the matrix to be re-

lated to the volumetric changes only, the material rate

of the deviatoric elastic left Cauchy-Green tensor re-

mains unaltered from (3) so that ˙̄be = ˙̄b. The rate of

elastic volume change Je =
√

detbe, however, is pre-

scribed by

J̇e = Je trd− ΓM (6)

and differs from J̇ by the rate of dissipative volume

change ΓM, which is generally a function of all kin-

ematic variables. Reinserting (6) into (3) and replacing

be for b and Je for J , one obtains

ḃe =
2

3
J2/3
e (trd)b̄e + J2/3

e

(
lb̄e + b̄el

T − 2

3
(trd)b̄e

)
− 2

3
J−1/3e ΓMb̄e = lbe + bel

T − 2

3
J−1e ΓMbe, (7)

hence specifying the tensor a in (2)1 as

a =
2

3
J−1e ΓMbe. (8)

The evolution law for the elastic component of the fiber

vectors (2)2 is subject to the requirement of invariance

under superimposed rigid body motions [Rubin, 1994a].

A pull-back of the vector me to the reference configur-

ation (the index i is omitted for the sake of brevity)

yields Me = F−1me with material time derivative

Ṁe =
˙

F−1me = F−1ṁe − F−1lme. (9)

The Lie time derivative, see [Holzapfel, 2000, Sec. 2.8,

5.3], ṁe − lme = F(
˙

F−1me) is objective since for an

arbitrary orthogonal transformation Q = Q(t) super-

imposed onto the current state of deformation, so that

F∗ = QF and m∗e = Qme, one verifies

F∗(
˙

F∗−1m∗e) = F∗Ṁe = Q (ṁe−lme) (10)
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and, accordingly, invariance of the evolution equation

(2)2 imposes that a likewise transforms as1 a∗ = Qa .

In the following, the particular representations

a i = Γ iFm
i
e (11)

are considered with scalar, objective functions Γ iF of the

kinematic variables b, be and all mk
e , k = 1, 2, ..., N .

2.3 Constitutive assumptions

Although generally inappropriate to depict the com-

plexity of the non-linear dissipative model, the image

of a rheological scheme with springs and dashpots fa-

cilitates understanding the constitutive assumptions.

Fibers can be imagined as parallel viscoelastic “Maxwell-

type” elements. Strain-energy storage is only related

to the length λe of the fiber vectors me. The matrix

is represented by two further, parallel components: a

spring depending on the total deformations (b) and a

“Maxwell-type” element, whose elastic part experiences

the deformations be. Restricting to a reduced set of in-

variants [see e.g. Ehret and Itskov, 2007], this implies a

free energy function of the form

Ψ = Ψ̂(I, J, Ie, Je, λe,1, ..., λe,N ), (12)

where Ψ is the free strain energy per unit reference

volume and the scalar arguments are given by

I = trb, J =
√

detb, Ie = trbe, Je =
√

detbe,

λe,i = |m |e,i, i = 1, 2, ..., N. (13)

The material time derivative of Eqn. (12) yields in view

of Eqns. ((2), (7) and (11)),

Ψ̇ =
∂Ψ

∂I
İ +

∂Ψ

∂J
J̇ +

∂Ψ

∂Ie
İe +

∂Ψ

∂Je
J̇e +

N∑
i=1

∂Ψ

∂λe,i
λ̇e,i

=
∂Ψ

∂I
I : ḃ +

∂Ψ

∂J

J

2
b−1 : ḃ +

∂Ψ

∂Ie
I : ḃe

+
∂Ψ

∂Je

Je
2
b−1e : ḃe +

N∑
i=1

∂Ψ

∂λe,i
λ−1e,i m

i
e · ṁ i

e

=

[
2
∂Ψ

∂I
b + 2

∂Ψ

∂Ie
be +

(
∂Ψ

∂J
J +

∂Ψ

∂Je
Je

)
I

+

N∑
i=1

∂Ψ

∂λe,i
λ−1e,im

i
e ⊗m i

e

]
: d

− J−1e ΓM
1

3

(
2
∂Ψ

∂Ie
be +

∂Ψ

∂Je
JeI

)
: I

1 In Rubin’s work [Rubin, 1994a,b, 1996] this is satisfied by
dissipative rates of the form a = Lpme, where the second-
order tensor Lp transforms as L∗

p = QLpQT under super-
posed rigid body motions. The approach in Eq. (11) is con-
sistent with the particular choice Lp = ΓFI.

−
N∑
i=1

λe,i
∂Ψ

∂λe,i
Γ iF. (14)

For convenience, we separate the Cauchy stress σ in

matrix (σM,σMe) and fiber (σFe) parts. The Clausius-

Planck form of the second law of thermodynamics [see

e.g. Holzapfel, 2000], can hence be written as

Jσ : d− Ψ̇ = J(σM + σMe + σFe) : d− Ψ̇ ≥ 0, (15)

and inserting Eqn. (14), one identifies the stress contri-

butions

σM =
2

J

∂Ψ

∂I
b +

∂Ψ

∂J
I,

σMe =
2

J

∂Ψ

∂Ie
be +

Je
J

∂Ψ

∂Je
I,

σFe =
1

J

N∑
i=1

∂Ψ

∂λe,i

1

λ e,i
m i

e ⊗m i
e. (16)

The remaining part imposes the thermodynamic re-

striction

J−1e ΓM
1

3
JσMe : I +

N∑
i=1

λe,i
∂Ψ

∂λe,i
Γ iF ≥ 0 (17)

that guarantees a non-negative rate of local entropy

production [see e.g. Coleman and Gurtin, 1967; Holza-

pfel, 2000].

2.4 Particular forms of the constitutive equations

Starting from the FM model by Bürzle and Mazza [2013],

we apply three major modifications: the matrix ma-

terial is assumed to be compressible and viscoelastic,

and the representative set of fibers, which was origin-

ally equally spaced within the membrane plane, is given

a small alternating off-plane inclination ±ϑ. The unit

vectors, defining the directions of the N representative

fibers, thus read (Remark 1)

M i = cosφi sin θe1 + sinφi sin θe2 + (−1)i cos θe3,

φi =
π

N

(
i− 3

2

)
, θ =

π

2
− ϑ. (18)

Moreover, the free energy representation (12) is spe-

cified so that the viscoelastic matrix contribution de-

pends only on the volume change Je, i.e. it becomes

independent of Ie. This reflects the assumption that Je
represents the volume change due to compression of the

fluid contained in the matrix, which is small due to the

very low compressibility of water. The free energy for

the so-obtained variant of the RB model reads [cf. Ru-

bin and Bodner, 2002; Bürzle and Mazza, 2013]

Ψ =
µ0

2q
(eqg − 1), g = g1 + g2 + g3. (19)
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Compared to the original RB model [Rubin and Bod-

ner, 2002], the volumetric term g1 depends on the vis-

coelastic volumetric deformations Je and is given by a

penalty function for nearly-incompressible hyperelastic

materials [Simo and Taylor, 1982], in agreement with

the just mentioned weak compressibility of water. More-

over, g2 represents the contribution of the compressible

solid matrix and is hence given in terms of the com-

pressible neo-Hookean model [see e.g. Holzapfel, 2000].

Finally, the affine fiber stretches in the fiber strain-

energy were replaced by λie and the parameter m̄3 =

N m3 was introduced in order to make the material

law “independent” of the number of fiber families used

to establish a quasi-isotropic in-plane response. Hence

g1, g2, g3 read

g1 = g1(Je) = m1

[
(Je − 1)2 + (ln Je)

2
]
,

g2 = g2(I, J) = m2 (I − 3) +
m2

m5

(
J−2m5 − 1

)
,

g3 = g3(λe,i) =
m̄3

m4

1

N

N∑
i=1

〈λe,i − 1〉2m4 , (20)

where 〈•〉 denote Macaulay brackets. In view of (16),

the Cauchy stress tensor σ = σMe + σM + σFe is thus

given by

σMe =
µ0e

qg

J
m1

(
J2
e − Je + ln Je

)
I,

σM =
µ0e

qg

J
m2

(
b− J−2m5I

)
,

σiFe =
µ0e

qg

J

m̄3

λe,i
〈λe,i − 1〉2m4−1 m i

e⊗m i
e,

σFe =
1

N

N∑
i=1

σiFe. (21)

Finally, the dissipative rates ΓM and Γ iF have to be

defined such that (17) is satisfied. Here, we suggest the

simple representations

ΓM = kMJ
αMtr(σMe),

Γ iF = kFλe,i
∂Ψ

∂λe,i
= kFtr(JσiFe) (22)

with three positive constants kM, kF and αM, and chosen

such that both the observed uniaxial relaxation and

creep responses could be captured. While the second

of these equations represents a simple linear relation

between the fiber Kirchhoff stress and the inelastic rates

Γ iF, the first one entails a power-law relationship between

the volume change of the tissue and the dissipative rate

ΓM, which can be motivated by drawing parallels with

the fluid flow in porous media (see the discussion Sec.

4.3).

Remark 1 The alternating off-plane inclination of the

fibers in (18) does not affect the in-plane quasi-isotropy

obtained with N families [cf. Bürzle and Mazza, 2013].

However, it induces a slight asymmetry of the struc-

ture with respect to the membrane plane. This is irrel-

evant if there is no shear across the thickness, as usu-

ally assumed for thin membranes. In the general case,

this asymmetry can be avoided by tilting the fiber fam-

ilies symmetrically in both directions, i.e. +ϑ and −ϑ,

thereby doubling their number.

2.5 Special case: compressible elastic formulation

The constitutive model established by the Eqns. ((18)-

(21)) contains as a special case an elastic compressible

model suitable to account for the quasi-static behavior

of the amnion. This model applies if the time-scale of

observation is long enough that the outflow of water has

entirely ceased (Je → 1) yet short enough that no sub-

stantial creep occurs in the fibers (λe,i → λf,i). With

these assumptions, it follows from Eqns. (20) and (21)

that

g = m2 (I − 3) +
m2

m5

(
J−2m5 − 1

)
+
m̄3

m4

1

N

N∑
i=1

〈λf,i − 1〉2m4 , (23)

σ =
µ0e

qg

J

[
m2

(
b− J−2m5I

)
+

1

N

N∑
i=1

m̄3

λf,i
〈λf,i−1〉2m4−1(FMi)⊗(FMi)

]
.

(24)

Multiplication of (24) by the current thickness of the

membrane yields a refined representation of the model

by Bürzle and Mazza [2013, Eq. 10 therein]. Similar

to the latter, the refined model yields accurate agree-

ment with the tension and lateral stretch responses in

uniaxial tension and provides an excellent prediction of

the equibiaxial tension response [Mauri et al, 2015a].

However, while the original, incompressible model im-

plies an increase in thickness in uniaxial tension, the

refined model agrees well with the reduction in thick-

ness observed by multiphoton microscopy [Mauri et al,

2015c] as illustrated in Fig. 1.

2.6 Numerical framework

The material model developed in Sec. 2 was imple-

mented in MATLAB (R2013a, The MathWorks, Inc.)
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Fig. 1 Comparison of lateral in-plane (λ2) and out-of-plane
(λ3) stretches vs. stretch in loading direction in uniaxial ten-
sion for the incompressible model with planar fibers [Bürzle
and Mazza, 2013] and the refined, compressible model with
slightly inclined fibers together with corresponding experi-
mental data reported in [Bürzle and Mazza, 2013; Mauri
et al, 2015b]. Parameters of the compressible model: µ̄0 =
0.131 N/mm; q = 2.96; ϑ = 9.51◦; m2 = 0.00228; m̄3 = 41.1;
m4 = 1.27; m5 = 0.463.

to compute the special cases of homogeneous uniaxial,

strip- and equi-biaxial tension under time-dependent

loading, which necessitated appropriate algorithms to

compute the rate equations (2). Procedures to integrate

the evolution equations appearing in RB type models

have been developed in [Rubin, 1989, 1996; Rubin and

Bodner, 2002], and recently by Rubin and Papes [2011]

and Hollenstein et al [2013]. The numerical integration

of the evolution equations (7) and (11) for me and be

follows the predictor-corrector scheme used to compute

the deviatoric elastic left Cauchy-Green tensor in [Ru-

bin and Bodner, 2002, Appendix A]. The recent modi-

fications to obtain the exact result in the case of zero

dissipation [Rubin and Papes, 2011; Hollenstein et al,

2013; Flynn and Rubin, 2014], which adopt the idea of

a relative deformation gradient from the configurations

at time tn to tn+1 [see Simo, 1992; Simo and Hughes,

2000], have been included.

Taking into account that the deformation gradient

F = F(X , tn+1) calculates from the previously achieved

value Fn = F(X , tn) as F = Fn + ∆F, an elastic

predictor can be calculated, assuming that the whole

deformation increment ∆F is elastic. To this end, the

incremental deformation gradient h = F(Fn)−1 is in-

troduced and it is predicted that F∗e = hFne . With this,

the estimator for be at n+1 reads [cf. Rubin and Papes,

2011; Hollenstein et al, 2013; Flynn and Rubin, 2014]

b∗e = hbneh
T, (25)

independent of the size of the time step ∆t. By means

of numerical integration of the evolution equation (7),

here by the backward Euler method (Remark 3), the

predictor can be corrected as

be = b∗e −∆t
2

3
J−1e ΓM be, (26)

which implies

be =

[
1 +

2∆t

3Je
ΓM

]−1
b∗e = κb∗e , (27)

Je =
√

detbe = κ3/2
√

detb∗e = Jne κ
3/2 deth (28)

and yields the implicit equation for κ as

1−
[
1 +

2

3

∆t

κ3/2Jne deth
ΓM

]
κ = 0. (29)

to be solved similar as in [Rubin and Bodner, 2002].

An analogous strategy is suggested to compute the

evolving fiber vectors m i
e. For the sake of clarity, the

fiber index i is omitted in what follows, but the same

procedure applies to all families of fibers. The elastic

predictor is chosen as

m∗e = hmn
e (30)

and, in regard of (11), the inelastic correction leads to

me = m∗e −∆tΓFme

⇔ me = [1 +∆tΓF]
−1

m∗e = νm∗e . (31)

Again, this yields the implicit equation for the scalar ν

to be solved

1− [1 +∆tΓF] ν = 0. (32)

Finally, Eq. (31) yields the updated me and λe = |me|.
Applying this procedure to all N families of fibers deliv-

ers a single value νi, for each fiber family, respectively.

Remark 2 Eq. (6) could be integrated directly to ob-

tain Je at tn+1 and update be = J
2/3
e b̄ = J

2/3
e J−2/3b.

With predictor J∗e = (deth)Jne and corrector Je = κ′J∗e
one would have to solve instead of (29)

1−
[
1 +

∆t

κ′J∗e
ΓM

]
κ′ = 0, (33)

which generally leads to another result for Je. The same

update would be obtained only if κ′ = κ3/2. Inserting

this into (33), one obtains

1−
[
1 +

∆t

κ3/2J∗e
ΓM

]
κ3/2 = 0,
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which differs from (29) by a factor of 2/3. However,

with the abbreviation z = (κ3/2J∗e )−1∆tΓM, Eqns. (29)

and (33) can be expanded in a Taylor series as

κ = (1 +
2

3
z)−1 = 1− 2

3
z +O(z2),

κ = (1 + z)−2/3 = 1− 2

3
z +O(z2),

respectively, converging to the same result for z � 1.

Remark 3 The implicit Euler method may be replaced

by other algorithms but care has to be taken that they

satisfy the concept of objective integrators [see e.g. Ru-

bin and Papes, 2011; Hollenstein et al, 2013]. For the

present calculations, which were free of superimposed ri-

gid body motions by definition, an efficient trapezoidal

rule was applied, so that the update y = yn+1 in Eqns.

(26) and (30) was of the form y = y∗ − (∆t/2)(ẏn + ẏ)

instead of y = y∗ −∆t ẏ.

2.7 Parameter identification

All parameters were obtained by minimizing the weight-

ed least-squares error between model and experimental

mean nominal tension and kinematic (contraction) re-

sponses from the relaxation phase of uniaxial relaxa-

tion tests (R-U). To this end, the model Cauchy stress

σ (21) was converted to nominal membrane tension

T = HJσF−T, where H denotes the thickness of the

amnion samples in the reference state. This is treated

as an unknown and lumped with µ0 into a single para-

meter µ̄0 = Hµ0, which has units of force per unit

length [cf. Bürzle and Mazza, 2013]. In accordance with

this, the parameters k̄M = kM/H and k̄F = kF/H

were defined so that the dissipative rates (22) and, cor-

respondingly, the evolution equations (2) become in-

dependent of the membrane thickness H. Finally, the

principal tension responses Tj , j = 1, 2, 3, were com-

puted for the special cases of uniaxial, strip-biaxial and

equibiaxial tension in order to compare with the experi-

mental data. To this end, the experimental local stretch

or tension histories in loading direction were used as

input and the boundary value problems with corres-

ponding boundary conditions were solved numerically,

including the integration of the evolution equations (see

Sec. 2.6). This provided at each time point those prin-

cipal stretches and tensions which were not prescribed,

and which were compared to the available experimental

responses.

The experimental curves were based on the meas-

ured force per initial width of the samples, the optically

determined in-plane stretch in loading direction λ1, the

lateral stretch λ2 (both evaluated in the central area of

the specimen) and the thickness ratio λ3 of the mem-

brane acquired by multiphoton microscopy, see [Mauri

et al, 2015c,b] for details. Experimental data were ob-

tained from mechanical tests performed on term fetal

membranes. Mean curves of the relaxation uniaxial ex-

periments, used for parameter identification, were com-

puted as explained in the Appendix. We emphasize that

the reconstructed loading was not included in the ob-

jective function for parameter identification.

The initial values of the parameters µ̄0, q, m2,4,5, m̄3

and ϑ followed from the values that had been identified

for the compressible elastic model described in Sec. 2.5.

For the remaining parameters k̄M,F and αM, which con-

trol the dissipative behavior in the matrix and fibers,

starting values were chosen such that both the relax-

ation and creep response were qualitatively captured.

Minimization of the objective function was performed

based on the MATLAB routine fminsearch. The para-

meter set obtained by this means is given in Table 1.

Table 1 Parameters representing the fitting to the mean re-
laxation curve under uniaxial tension configuration.

R-U

General parameters
µ̄0 [N/mm] 2.2153 10−3

q [-] 2.9215
Matrix parameters
m1 [-] 1.3677 10+1

m2 [-] 9.2900 10−5

m5 [-] 3.0456
k̄M [mm/Ns] 6.7596 10+1

αM [-] 5.655
Fiber parameters
m̄3 [-] 3.1863 10+1

m4 [-] 6.7908 10−1

ϑ [◦] 1.0907 10+1

k̄F [mm/Ns] 1.0166 10−4

After identifying the parameters by adjustment of

the model to the mean relaxation curve, the model was

compared to each individual experiment in a second

step, where all parameters except the factor µ̄0 were

kept constant. The specimen specific µ̄0 was determ-

ined by comparing one single value from experiment

and simulation. In the uniaxial and strip-biaxial relax-

ation tests, this value was the peak tension at the end of

the (sample specific) loading ramp. For uniaxial creep

tests, the value of λ1 at the beginning of the creep phase

was used. The so-obtained agreement between experi-

ments and simulations is illustrated in the next section.
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3 Results

3.1 Mean relaxation response

The fitted volumetric time-dependent model is shown in

Fig. 2 and compared with the mean experimental data

from Mauri et al [2015c]. The proposed model formula-

tion nicely captures the large tension relaxation char-

acteristic of the amnion and its corresponding volume

changes. The in-plane contraction is slightly underes-

timated in the initial relaxation phase; however this dif-

ference lies within the standard deviation of the exper-

imental results (gray shadow). The out-of-plane stretch

λ3 slightly increases in the first 0.5 s of the very fast

loading and finally reaches the long-term value experi-

mentally observed in Mauri et al [2015c].
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Fig. 2 Fit of the model to the mean relaxation response of
the amnion under uniaxial tension configuration (R-U). The
experimental mean and standard deviation are shown in gray,
and the model in red. The model is able to nicely represent
the tension relaxation of the amnion and its in-plane (solid
line) and out-of plane (dashed line) kinematic behavior.

3.2 Sample-specific relaxation curves

The model response after adjustment of the parameter

µ̄0 is shown for each experimental curves in Fig. 3. Spe-

cimens with a behavior in the variability spread are

very well captured with the fit of this single parameter.

Note that the logarithmic scale enhances the differences

between model and experiment in the loading phase of

the relaxation tests, and that few experimental data

points were available for the very fast loading phase

(less than 2 s) as a result of limitations in the rate of

image acquisition. Thus, the differences between model

and experiments in the loading regime are due to the

fact that the loading phase has not been considered

during the parameter identification of the model.

3.3 Prediction of uniaxial creep and strip-biaxial

relaxation experiments

This model calibrated with the uniaxial relaxation (R-

U) experiments is able to reproduce the very small creep

accumulation typical of soft tissues and reported for

the human amnion in Mauri et al [2015c]. The variab-

ility of the specimens in the uniaxial creep experiments

(C-U) could likewise successfully be accounted for by

adjustment of the parameter µ̄0. We restrict in Fig. 4

to presenting the best and worst fitting obtained, to

demonstrate the robustness of this procedure. In both

cases, the model is able to capture the very small creep

strain accumulation in the loading direction and the

corresponding creep accumulation in the transverse dir-

ection - in addition to the strong lateral contraction

during loading. The largest discrepancy between the

model and the experimental data occurs in the first

part of the fast loading, similarly as for the relaxation

experiments.
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Fig. 4 The in-plane stretches under uniaxial creep configur-
ation (C-U) are shown for the best and worst model fit. The
reported curves include the initial loading up to the constant
creep force.

The relaxation response of this model formulation

under strip-biaxial configuration (R-B) was also com-

puted and compared with the experimental data. In

R-B specimens, the biaxial state of tension was ob-

tained by restraining the lateral (but not thickness)

contraction during uniaxial extension by a large width-

to-length ratio [see e.g. Holzapfel, 2000]. Note that the
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Fig. 3 The value of the µ̄0 parameter is shown for each R-U specimen. The agreement between experiments and model fitting
is remarkable, especially considering that the local stretch during relaxation (λ0) varies largely among specimens (from 1.07
to 1.22).

relaxation behavior in R-B tests is considerably differ-

ent from the R-U case [Mauri et al, 2015c]. In particular,

the tension level after 10 min drops to 53% of the initial

value for strip-biaxial and to 46% for the uniaxial con-

figurations. Similarly as for the C-U data, the best and

worst fit are reported in Fig. 5. Although, the model

seems to overestimate slightly the nominal tension in

the long-term regime, the overall fit is very good for a

model calibrated with only uniaxial relaxation data.
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Fig. 5 The best and worst fits are shown for the tension
relaxation under strip-biaxial configuration (R-B).

The specimen-specific parameter (µ̄0) is reported in

Table 2 for all considered experiments, showing a vari-

ability in the same order of magnitude of the experimental-

curves. Notably, its value is also visibly affected by the

origin of the membrane, see e.g. M1 and M2, indic-

ating that the distribution of the parameter (µ̄0) in-

cludes both the inter- and intra-subject variability of

the healthy human amnion.

Table 2 Specimen-specific parameter µ̄0 for all membranes.

Specimen Membrane µ̄0 [N/mm]

S1 M1 0.0051099
S2 M1 0.0086409
S3 M1 0.0090991
S4 M2 0.0021045
S5 M2 0.0012331
S6 M2 0.0007733
S7 M2 0.0000609
S8 M3 0.0038194
S9 M3 0.0062780
S10 M4 0.0089720
S11 M4 0.0045275
S12 M4 0.0069782
S13 M5 0.0006646
S14 M5 0.0014564
S15 M5 0.0003088
S16 M5 0.0013915
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4 Discussion

4.1 Large tension relaxation but very small creep

strain accumulation

This volumetric viscoelastic model based on the frame-

work proposed by Rubin and Bodner [2002] was de-

veloped to capture the macroscopic and microscopic

mechanical behavior of the human amnion as repor-

ted in Mauri et al [2015c]. The large volume reduc-

tion observed experimentally motivated the compress-

ible formulation of the viscoelastic model. The 11 para-

meters contained in the model were fitted to the re-

laxation response under uniaxial tension configuration

(cf. Table 1 and Fig. 2) and used to predict the re-

sponse of the uniaxial creep (Fig. 4) and strip-biaxial

relaxation (Fig. 5) experiments. The viscoelastic be-

havior of human amnion, especially the interrelation

of large tension reduction during relaxation and the

very small strain accumulation during creep are en-

compassed in this model. This interrelation is a charac-

teristic of many soft biological tissues [Thornton et al,

2001; Lakes and Vanderby, 1999] and is missing in the

quasilinear viscoelastic (QLV) formulation [Thornton

et al, 1997; Haslach, 2005; Oyen et al, 2005; Sopakay-

ang and De Vita, 2011; Anssari-Benam et al, 2012].

Although this model remains phenomenological, e-

lastic and dissipative effects can be associated with mat-

rix and fiber components, based on insights gained with

detailed experimental investigations. The present for-

mulation is able to capture the two mechanisms sugges-

ted in Mauri et al [2015c] for the time-dependent beha-

vior of the amnion, i.e. a short-term relaxation response

related to fiber alignment and water outflow from the

matrix on the one hand, and a long-term relaxation

related to dissipative fiber behavior on the other one.

The coupling between the matrix and the fibers is very

strong and determines the resulting equilibrium in the

model.

This approach allowed the formulation of a simple

model able to reproduce the compressible and time-

dependent behavior of human amnion under different

multiaxial loading conditions in both relaxation and

creep states.

4.2 Inter- and intra-subject variability

Large variability between specimens has typically been

observed in previous investigations of the human am-

nion [e.g. Jabareen et al, 2009; Bürzle and Mazza, 2013]

and is reflected by the scatter of the specimen-specific

parameter (µ̄0). El Khwad et al [2005] reported a similar

inter- and intra-patient variability in the value of FM

strength, which is even larger if specimens of the cer-

vical region are considered. This variability is intrinsic

in the material inhomogeneity and correlates with the

amount of collagen in the tissue [Bürzle et al, 2013]. We

believe that the variability in mechanical response is in-

duced by a different amount of mechanically significant

material in the specimen, rather than by differences in

its internal organization and microstructure. This hy-

pothesis is in agreement with the results of the renor-

malization procedure proposed in Mauri et al [2015c],

where the relative shift of the curves is neutralized by

the normalization of the curves at the common peak

force and would also explain the very small variability

observed in the normalized curves of the relaxation data

[Mauri et al, 2015c; Oyen et al, 2004]. Correspondingly,

the differences between specimens can be explained in

the proposed modeling formulation by one single para-

meter µ̄0 = Hµ0, which is a coefficient of all tension

components (cf. Eqns. (21)).
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0
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0.006

0.008
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0.012
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]

Fig. 6 Distribution of the modeling parameter µ̄0 within dif-
ferent patients. Parameter values are reported for each mem-
brane (M) as mean ± standard deviation.

As opposed to patient-specific simulations (e.g. Jac-

obs et al [2014]), where the complete material model

is specifically defined for each patient, the presented

model can be applied to any FM, with only µ̄0 as pa-

tient specific input. The distribution of µ̄0 contains the

inter- and intra-patient variability (see Fig. 6) and can

be used to define a confidence interval representative of

the healthy term human amnion. This new interpreta-

tion of the model parameter µ̄0 represents a first step

towards a less deterministic and more stochastic view

of the material modeling of human tissues. The pos-

sibility of including in numerical simulations a predic-

tion range representative of the healthy human tissue,

will allow to evaluate the response of amnion in differ-

ent experimental protocols, under physiological loading

conditions (e.g. contractions) or during medical proced-

ures.
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4.3 Limitations and future directions

Based on the parameter set reported in Table 1, the

equibiaxial creep behavior under constant tension was

simulated and compared to the first cycle of the creep

inflation experiments in [Mauri et al, 2015c], the res-

ults of which were provided in terms of d/d0, the accu-

mulated apex displacement d of the inflated membrane

with respect to the displacement d0 at the beginning

of the creep phase. Adjustment of µ̄0 and a meaning-

ful quantitative comparison of the model with the test

data is only possible by inverse FE analysis. As a first

approximation, however, d/d0 is comparable to the ra-

tio ε/ε0, where ε = λ− 1 denotes the in-plane strain in

the equibiaxially stretched membrane and, again, the

subscript 0 refers to its value at the beginning of the

creep phase. The result shown in Fig. 7 indicates that

0 100 200 300 400 500 600
1

1.05

1.1

1.15

Time [s]

d/
d 0 [−

]  
   

   
 ε

 / 
ε 0 [−

]

 

 
C−EB model

C−I 1st

Fig. 7 Prediction of creep in planar equibiaxial tension based
on the parameters in Table 1 and comparison with the exper-
imentally observed ratio of apex displacement in creep infla-
tion experiments [Mauri et al, 2015c].

the long-term accumulation of biaxial creep strain is

significantly over-predicted by the model. While it is

possible to avoid this discrepancy by a more involved

formulation of the dissipative rates Γ iF (cf. Eq. (22)),

this optimization is beyond the scope of this study,

which aimed at the definition of a very simple model

formulation able to reproduce the interrelation of uni-

axial relaxation and creep behavior.

Generally, a modification of ΓM and Γ iF, which are

presently given by simple phenomenological formula-

tions, bears great potential for an improvement of the

model. In fact, for ΓM a relation with the theory of

porous media (TPM), see e.g. [de Boer, 2000] may be

drawn by rewriting (6) such that J
e
trd = J̇

e
+ΓM. This

states that the change of current volume of contained

water with tissue volume is composed of the change due

to the actual (but very small) elastic compressibility,

and of ΓM, which can thus be attributed to a dissipat-

ive flow of the water through the matrix. According to

Darcy’s law, the latter should be driven by the pressure

gradient in the tissue. Here, due to the membrane di-

mensions, the latter might be assumed to be dominated

by the component in thickness direction [cf. with as-

sumptions in Taber and Puleo, 1996]. Further, the flow

may be assumed constant through the thickness, so that

the pressure itself becomes the driving force. Indeed,

ΓM depends on the hydrostatic pressure term trσMe in

the present formulation. Seen from this perspective, the

power law down-weighting ΓM with reducing volume in

(22) might be motivated with a changing permeabil-

ity as was realized in refined TPM models [Ehlers and

Eipper, 1999].

The constitutive model developed in the present

study can be used to investigate the deformation beha-

vior, strength and fracture properties of non-pathological

tissue at the end of gestation. Obviously, most clin-

ical questions are related to the mechanical response of

amnion earlier in pregnancy or in case of pathological

conditions. Future investigations will address preterm

tissue and tissues subjected to deterioration associated

with biochemical agents [Moore et al, 2006]. The pro-

posed model formulation might be used as a basis to

define corresponding constitutive equations to analyze

pathological conditions and to identify specific model

parameter changes associated with tissue deterioration

and preterm rupture. Systematic investigation of the

relation between the effect of biochemical factors and

mechanical properties will inform corresponding modi-

fications of the model formulation in order to quantify

the effect of e.g. inflammatory processes or decidual

bleeding [Kumar et al, 2011] on the ability of amnion

to resist physiological loading conditions.

5 Conclusion

A compressible and time-dependent model for the hu-

man amnion has been formulated and validated. A new

approach to the interpretation and definition of its para-

meters has been presented, which allows representing

the intra- and inter-membrane variability with one single

parameter. This approach demonstrated the predictive

capabilities of the selected formulation for relaxation

and creep in uniaxial and biaxial loading states.
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Appendix

Experimental materials and methods

The experimental data published in Mauri et al [2015c]

were used to calibrate and validate the proposed model.

Additional tests were performed to increase the num-

ber of R-U specimens from different membranes to bet-

ter evaluate the model. For these additional amnion

samples, after informed written consent of the patients

was given (Ethical Committee of the District of Zurich

Stv22/2006 and Stv07/07), preparation, testing and post

processing were performed as described in Mauri et al

[2015c]. All membranes were collected from term elect-

ive caesarean sections. The model response under dif-

ferent multiaxial relaxation and creep configurations

was computed with the time, force and local strain his-

tories of all experiments. The local in-plane stretches

were extracted from the images recorded with 4 Hz

through the video extensometer system, similarly to

Perrini et al [2015]. The holding stretch in relaxation

tests was defined by a target force [cf. Mauri et al,

2015c], which resulted in different values for the stretch

due to the variability of the specimen properties. There-

fore, the mean relaxation curve was calculated after

synchronizing the times for which the target force was

reached (times at peak). To simulate the complete de-

formation history of the experiment, an according rep-

resentative loading ramp with constant rate was gen-

erated from the average local stretch and the average

time at the peak.
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