316 research outputs found

    Climate sensitivity uncertainty : When is good news bad?

    Get PDF
    Climate change is real and dangerous. Exactly how bad it will get, however, is uncertain. Uncertainty is particularly relevant for estimates of one of the key parameters: equilibrium climate sensitivity—how eventual temperatures will react as atmospheric carbon dioxide concentrations double. Despite significant advances in climate science and increased confidence in the accuracy of the range itself, the “likely” range has been 1.5-4.5°C for over three decades. In 2007, the Intergovernmental Panel on Climate Change (IPCC) narrowed it to 2-4.5°C, only to reverse its decision in 2013, reinstating the prior range. In addition, the 2013 IPCC report removed prior mention of 3°C as the “best estimate.” We interpret the implications of the 2013 IPCC decision to lower the bottom of the range and excise a best estimate. Intuitively, it might seem that a lower bottom would be good news. Here we ask: When might apparently good news about climate sensitivity in fact be bad news in the sense that it lowers societal wellbeing? The lowered bottom value also implies higher uncertainty about the temperature increase, a definite bad. Under reasonable assumptions, both the lowering of the lower bound and the removal of the “best estimate” may well be bad news

    Instabilities and robust control in natural resource management

    Get PDF
    Most renewable natural resources exhibit marked demographic and environmental stochasticities, which are exarcebated in management decisions by the uncertainty regarding the choice of an appropriate model to describe system dynamics. Moreover, demand and supply analysis often indicates the presence of instabilities and multiple equilibria, which may lead to management problems that are intensified by uncertainty on the evolution of the resource stock. In this paper the fishery management problem is used as an example to explore the potential of robust optimal control, where the objective is to choose a harvesting rule that will work under a range of admissible specifications for the stock-recruitment equation. The paper derives robust harvesting rules leading to a unique equilibrium, which could be helpful in the design of policy instruments such as robust quota systems.info:eu-repo/semantics/publishedVersio

    Priority for the Worse Off and the Social Cost of Carbon

    Get PDF
    The social cost of carbon (SCC) is a monetary measure of the harms from carbon emission. Specifically, it is the reduction in current consumption that produces a loss in social welfare equivalent to that caused by the emission of a ton of CO2. The standard approach is to calculate the SCC using a discounted-utilitarian social welfare function (SWF)—one that simply adds up the well-being numbers (utilities) of individuals, as discounted by a weighting factor that decreases with time. The discounted-utilitarian SWF has been criticized both for ignoring the distribution of well-being, and for including an arbitrary preference for earlier generations. Here, we use a prioritarian SWF, with no time-discount factor, to calculate the SCC in the integrated assessment model RICE. Prioritarianism is a well-developed concept in ethics and theoretical welfare economics, but has been, thus far, little used in climate scholarship. The core idea is to give greater weight to well-being changes affecting worse off individuals. We find substantial differences between the discounted-utilitarian and non-discounted prioritarian SCC

    Macroeconomic impact of stranded fossil-fuel assets

    Get PDF
    Several major economies rely heavily on fossil-fuel production and exports, yet current low-carbon technology diffusion, energy efficiency and climate policy may be substantially reducing global demand for fossil fuels.1-4 This trend is inconsistent with observed investment in new fossil-fuel ventures1,2, which could become stranded as a result. Here we use an integrated global economy environment simulation model to study the macroeconomic impact of stranded fossil-fuel assets (SFFA). Our analysis suggests that part of the SFFA would occur as a result of an already ongoing technological trajectory, irrespective of whether new climate policies are adopted or not; the loss would be amplified if new climate policies to reach the 2°C target are adopted and/or if low-cost producers (some OPEC countries) maintain their level of production (‘sell-out’) despite declining demand; the magnitude of the loss from SFFA may amount to a discounted global wealth loss of $1-4tn; and there are clear distributional impacts, with winners (e.g. net importers such as China or the EU) and losers (e.g. Russia, the US or Canada, which could see their fossil-fuel industries nearly shut down), although the two effects would largely offset each other at the level of aggregate global GDP.The authors acknowledge C-EERNG and Cambridge Econometrics for support, and funding from EPSRC (JFM, fellowship no. EP/ K007254/1); the Newton Fund (JFM, PS, JV, EPSRC grant no EP/N002504/1 and ESRC grant no ES/N013174/1), NERC (NRE, PH, HP, grant no NE/P015093/1), CONICYT (PS), the Philomathia Foundation (JV), the Cambridge Humanities Research Grants Scheme (JV), and Horizon 2020 (HP, JFM; Sim4Nexus project)
    corecore