167 research outputs found

    Measuring access to primary care appointments: a review of methods

    Get PDF
    BACKGROUND: Patient access to primary care appointments is not routinely measured despite the increasing interest in this aspect of practice activity. The generation of standardised data (or benchmarks) for access could inform developments within primary care organisations and act as a quality marker for clinical governance. Logically the setting of targets should be based on a sound system of measurement. The practicalities of developing appropriate measures need debate. Therefore we aimed to search for and compare methods that have been published or are being developed to measure patient access to primary care appointments, with particular focus on finding methods using appointment system data. METHOD: A search and review was made of the primary care literature from 1990 to 2001, which included an assessment of online resources (websites) and communication with recognised experts. The identified methods were assessed. RESULTS: The published literature in this specific area was not extensive but revealed emerging interest in the late 1990s. Two broad approaches to the measurement of waiting times to GP appointments were identified. Firstly, appointment systems in primary care organisations were analysed in differing ways to provide numerical data and, secondly, patient perceptions (reports) of access were evaluated using survey techniques. Six different methods were found which were based on appointment systems data. CONCLUSION: The two approaches of either using patient questionnaires or appointment system data are methods that represent entirely different aims. The latter method when used to represent patient waiting times for 'routine' elective appointments seems to hold promise as a useful tool and this avoids the definitional problems that surround 'urgent' appointments. The purpose for which the data is being collected needs to be borne in mind and will determine the chosen methods of data retrieval and representation

    Supporting carers to manage pain medication in cancer patients at the end of life: A feasibility trial

    Get PDF
    Background: Carers of people with advanced cancer play a significant role in managing pain medication, yet they report insufficient information and support to do so confidently and competently. There is limited research evidence on the best ways for clinicians to help carers with medication management. Aims: To develop a pain medicines management intervention (Cancer Carers Medicines Management) for cancer patients’ carers near the end of life and evaluate feasibility and acceptability to nurses and carers. To test the feasibility of trial research procedures and to inform decisions concerning a full-scale randomised controlled trial. Design: Phase I-II clinical trial. A systematic, evidence-informed participatory method was used to develop CCMM: a nurse-delivered structured conversational process. A two-arm, cluster randomised controlled feasibility trial of Cancer Carers Medicines Management was conducted, with an embedded qualitative study to evaluate participants’ experiences of Cancer Carers Medicines Management and trial procedures. Setting: Community settings in two study sites. Participants: Phase I comprises 57 carers, patients and healthcare professionals and Phase II comprises 12 nurses and 15 carers. Results: A novel intervention was developed. Nurses were recruited and randomised. Carer recruitment to the trial was problematic with fewer than predicted eligible participants, and nurses judged a high proportion unsuitable to recruit into the study. Attrition rates following recruitment were typical for the study population. Cancer Carers Medicines Management was acceptable to carers and nurses who took part, and some benefits were identified. Conclusion: Cancer Carers Medicines Management is a robustly developed medicines management intervention which merits further research to test its effectiveness to improve carers’ management of pain medicines with patients at the end of life. The study highlighted aspects of trial design that need to be considered in future research

    Candida albicans Scavenges Host Zinc via Pra1 during Endothelial Invasion

    Get PDF
    The ability of pathogenic microorganisms to assimilate essential nutrients from their hosts is critical for pathogenesis. Here we report endothelial zinc sequestration by the major human fungal pathogen, Candida albicans. We hypothesised that, analogous to siderophore-mediated iron acquisition, C. albicans utilises an extracellular zinc scavenger for acquiring this essential metal. We postulated that such a “zincophore” system would consist of a secreted factor with zinc-binding properties, which can specifically reassociate with the fungal cell surface. In silico analysis of the C. albicans secretome for proteins with zinc binding motifs identified the pH-regulated antigen 1 (Pra1). Three-dimensional modelling of Pra1 indicated the presence of at least two zinc coordination sites. Indeed, recombinantly expressed Pra1 exhibited zinc binding properties in vitro. Deletion of PRA1 in C. albicans prevented fungal sequestration and utilisation of host zinc, and specifically blocked host cell damage in the absence of exogenous zinc. Phylogenetic analysis revealed that PRA1 arose in an ancient fungal lineage and developed synteny with ZRT1 (encoding a zinc transporter) before divergence of the Ascomycota and Basidiomycota. Structural modelling indicated physical interaction between Pra1 and Zrt1 and we confirmed this experimentally by demonstrating that Zrt1 was essential for binding of soluble Pra1 to the cell surface of C. albicans. Therefore, we have identified a novel metal acquisition system consisting of a secreted zinc scavenger (“zincophore”), which reassociates with the fungal cell. Furthermore, functional similarities with phylogenetically unrelated prokaryotic systems indicate that syntenic zinc acquisition loci have been independently selected during evolution

    Molecular Time-Course and the Metabolic Basis of Entry into Dauer in Caenorhabditis elegans

    Get PDF
    When Caenorhabditis elegans senses dauer pheromone (daumone), signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1) and normal growth media plus liquid culture (Path 2). Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h) and is complete at S6 (72 h). Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org) that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas

    Mechanism of subunit interaction at ketosynthase-dehydratase junctions in trans-AT polyketide synthases

    Get PDF
    Modular polyketide synthases (PKSs) produce numerous structurally complex natural products with diverse applications in medicine and agriculture. They typically consist of several multienzyme subunits that utilize structurally-defined docking domains (DDs) at their N- and C-termini to ensure correct assembly into functional multi-protein complexes. Here we report a fundamentally different mechanism for subunit assembly in trans-AT modular PKSs at the junction between ketosynthase (KS) and dehydratase (DH) domains. This involves direct interaction of a largely unstructured docking domain (DD) at the C-terminus of the KS with the surface of the downstream DH. Acyl transfer assays and mechanism-based cross-linking established that the DD is required for the KS to communicate with the acyl carrier protein appended to the DH. Two distinct regions for binding of the DD to the DH were identified using NMR spectroscopy, carbene foot-printing and mutagenesis, providing a foundation for future elucidation of the molecular basis for interaction specificity

    Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving variations in the transcriptome of many genes. AD does not affect all brain regions simultaneously. Identifying the differences among the affected regions may shed more light onto the disease progression. We developed a novel method involving the differential topology of gene coexpression networks to understand the association among affected regions and disease severity.</p> <p>Methods</p> <p>We analysed microarray data of four regions - entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC) and middle temporal gyrus (MTG) from AD affected and normal subjects. A coexpression network was built for each region and the topological overlap between them was examined. Genes with zero topological overlap between two region-specific networks were used to characterise the differences between the two regions.</p> <p>Results and conclusion</p> <p>Results indicate that MTG shows early AD pathology compared to the other regions. We postulate that if the MTG gets affected later in the disease, post-mortem analyses of individuals with end-stage AD will show signs of early AD in the MTG, while the EC, HIP and PCC will have severe pathology. Such knowledge is useful for data collection in clinical studies where sample selection is a limiting factor as well as highlighting the underlying biology of disease progression.</p

    Application of Silicon Photomultipliers to Positron Emission Tomography

    Get PDF
    Historically, positron emission tomography (PET) systems have been based on scintillation crystals coupled to photomultipliers tubes (PMTs). However, the limited quantum efficiency, bulkiness, and relatively high cost per unit surface area of PMTs, along with the growth of new applications for PET, offers opportunities for other photodetectors. Among these, small-animal scanners, hybrid PET/MRI systems, and incorporation of time-of-flight information are of particular interest and require low-cost, compact, fast, and magnetic field compatible photodetectors. With high quantum efficiency and compact structure, avalanche photodiodes (APDs) overcome several of the drawbacks of PMTs, but this is offset by degraded signal-to-noise and timing properties. Silicon photomultipliers (SiPMs) offer an alternative solution, combining many of the advantages of PMTs and APDs. They have high gain, excellent timing properties and are insensitive to magnetic fields. At the present time, SiPM technology is rapidly developing and therefore an investigation into optimal design and operating conditions is underway together with detailed characterization of SiPM-based PET detectors. Published data are extremely promising and show good energy and timing resolution, as well as the ability to decode small scintillator arrays. SiPMs clearly have the potential to be the photodetector of choice for some, or even perhaps most, PET systems

    Assessment of habitat and survey criteria for the great crested newt (Triturus cristatus) in Scotland: a case study on a translocated population

    Get PDF
    The great crested newt Triturus cristatus has declined across its range due to habitat loss, motivating research into biotic and abiotic species determinants. However, research has focused on populations in England and mainland Europe. We examined habitat and survey criteria for great crested newts in Scotland, with focus on a large, translocated population. Adult counts throughout the breeding season were obtained annually using torchlight surveys, and Habitat Suitability Index (HSI) assessed at created ponds (N = 24) in 2006 (immediately post-translocation) and 2015 (9 years post-translocation). In 2006, ‘best case’ HSI scores were calculated to predict habitat suitability should great crested newts have unrestricted access to terrestrial habitat. Abiotic criteria included in and omitted from current great crested newt survey guidelines were assessed using data recorded in 2015. Some ponds had improved HSI scores in 2015, but overall failure to meet predicted scores suggests management is needed to improve habitat suitability. Great crested newt activity was positively associated with moon visibility and phase, air temperature, and pH, but negatively correlated with water clarity. Importantly, our results indicate there are abiotic determinants specific to Scottish great crested newts. Principally, survey temperature thresholds should be lowered to enable accurate census of Scottish populations

    Clinical chronobiology: a timely consideration in critical care medicine

    Get PDF
    A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of "chronopathology", when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of "chronofitness" as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients
    corecore