1,279 research outputs found

    First In human study of a novel biased apelin receptor ligand, MM54, a G-alpha(i) agonist/beta-arrestin antagonist

    Get PDF
    Introduction: The peptide apelin acts via G proteins to cause beneficial vasodilation and potent positive inotropy to ameliorate pulmonary arterial hypertension in humans and animal models. Apelin is internalised via β-arrestin. In contrast, with loss of endogenous apelin, its receptor acts as a mechanosensor, stimulating β-arrestin to induce detrimental cardiac hypertrophy. Our aim was to characterise the action of our apelin ligand, MM54 that in cell based assays blocks β-arrestin but activates the Gαi protein pathway, in this first in human study. Method: Competition binding in human heart (n=3) used [I125] [Pyr1]apelin-13 (0.1nmol/L). β-arrestin recruitment, receptor internalization and forskolin-induced cAMP inhibition were measured in CHO-K1 cells expressing human apelin receptor. Forearm blood flow was measured in 9 volunteers using venous occlusion plethysmography at baseline and at 4 incremental doses (1, 10, 30, 100 nmol/min) of MM54, each for eight minutes. The Aellig hand vein technique was used to measure the effect of 3 incremental doses (3, 30, 300 nmol/min) of MM54 for 15 min on veins pre-constricted with noradrenaline in 6 individuals compared with 8 controls. Data are mean+SEM, n≥3. Results: MM54 had an affinity of pKi = 6.50±0.03. In β-arrestin (pKB 6.93±0.15) and receptor internalization assays (pKB 5.89±0.06) MM54 was an antagonist, but activated the G protein pathway (pD2±SEM 5.86+0.23). At the highest concentration (100 nmol/min), MM54 caused a significant absolute increase in forearm blood flow compared to control arm, representing a 76 % change from baseline (P<0.01, ANOVA with repeated measures with Dunnett’s post hoc analysis on untransformed data). In the hand vein, MM54 caused a significant concentration dependent dilatation in veins over the concentration range tested, with the highest dose causing 57% reversal (P<0.01). Conclusion: At the cellular level, the results suggest MM54 induced a different conformation in the receptor compared with the native peptide apelin, resulting in a biased profile of activating the G protein pathway but blocking β-arrestin. In agreement in clinical studies, in both the arterial and venous circulation, MM54 induced vasodilatation that is thought to be mediated by the G protein pathway

    Exact deterministic representation of Markovian SIR epidemics on networks with and without loops

    Get PDF
    In a previous paper Sharkey et al. (Bull Math Biol doi: 10.1007/s11538-013-9923-5, 2012) proved the exactness of closures at the level of triples for Markovian SIR (susceptible-infected-removed) dynamics on tree-like networks. This resulted in a deterministic representation of the epidemic dynamics on the network that can be numerically evaluated. In this paper, we extend this modelling framework to certain classes of networks exhibiting loops. We show that closures where the loops are kept intact are exact, and lead to a simplified and numerically solvable system of ODEs (ordinary-differential-equations). The findings of the paper lead us to a generalisation of closures that are based on partitioning the network around nodes that are cut-vertices (i.e. the removal of such a node leads to the network breaking down into at least two disjointed components or subnetworks). Exploiting this structural property of the network yields some natural closures, where the evolution of a particular state can typically be exactly given in terms of the corresponding or projected states on the subnetworks and the cut-vertex. A byproduct of this analysis is an alternative probabilistic proof of the exactness of the closures for tree-like networks presented in Sharkey et al. (Bull Math Biol doi: 10.1007/s11538-013-9923-5, 2012). In this paper we also elaborate on how the main result can be applied to more realistic networks, for which we write down the ODEs explicitly and compare output from these to results from simulation. Furthermore, we give a general, recipe-like method of how to apply the reduction by closures technique for arbitrary networks, and give an upper bound on the maximum number of equations needed for an exact representation

    A monotonic relationship between the variability of the infectious period and final size in pairwise epidemic modelling

    Get PDF
    For a recently derived pairwise model of network epidemics with non-Markovian recovery, we prove that under some mild technical conditions on the distribution of the infectious periods, smaller variance in the recovery time leads to higher reproduction number, and consequently to a larger epidemic outbreak, when the mean infectious period is fixed. We discuss how this result is related to various stochastic orderings of the distributions of infectious periods. The results are illustrated by a number of explicit stochastic simulations, suggesting that their validity goes beyond regular networks

    A stochastic model for topographically influenced cell migration.

    Get PDF
    Migrating cells traverse a range of topographic configurations presented by the native extracellular environment to conduct their physiologic functions. It is well documented cells can modulate their behaviour in response to different topographic features, finding promising applications in biomaterial and bioimplant design. It is useful, in these areas of research, to be able to predict which topographic arrangements could be used to promote certain patterns of migration prior to laboratory experimentation. Despite a profusion of study and interest shown in these fields by experimentalists, the related modelling literature is as yet relatively sparse and tend to focus more on either cell-matrix interaction or morphological responses of cells. We propose a mathematical model for individual cell migration based on an Ornstein-Uhlenbeck process, and set out to see if the model can be used to predict migration patterns on 2-d isotropic and anisotropic topographies, whose characteristics can be broadly described as either uniform flat, uniform linear with variable ridge density or non-uniform disordered with variable feature density. Results suggest the model is capable of producing realistic patterns of migration for flat and linear topographic patterns, with calibrated output closely approximating NIH3T3 fibroblast migration behaviour derived from an experimental dataset, in which migration linearity increased with ridge density and average speed was highest at intermediate ridge densities. Exploratory results for non-uniform disordered topographies suggest cell migration patterns may adopt disorderedness present in the topography and that 'distortion' introduced to linear topographic patterns may not impede linear guidance of migration, given it's magnitude is bounded within certain limits. We conclude that an Ornstein-Uhlenbeck based model for topographically influenced migration may be useful to predict patterns of migration behaviour for certain isotropic (flat) and anisotropic (linear) topographies in the NIH3T3 fibroblast cell line, but additional investigation is required to predict with confidence migration patterns for non-uniform disordered topographic arrangements

    Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)

    Get PDF
    Bovine TB is a major problem for the agricultural industry in several countries. TB can be contracted and spread by species other than cattle and this can cause a problem for disease control. In the UK and Ireland, badgers are a recognised reservoir of infection and there has been substantial discussion about potential control strategies. We present a coupling of individual based models of bovine TB in badgers and cattle, which aims to capture the key details of the natural history of the disease and of both species at approximately county scale. The model is spatially explicit it follows a very large number of cattle and badgers on a different grid size for each species and includes also winter housing. We show that the model can replicate the reported dynamics of both cattle and badger populations as well as the increasing prevalence of the disease in cattle. Parameter space used as input in simulations was swept out using Latin hypercube sampling and sensitivity analysis to model outputs was conducted using mixed effect models. By exploring a large and computationally intensive parameter space we show that of the available control strategies it is the frequency of TB testing and whether or not winter housing is practised that have the most significant effects on the number of infected cattle, with the effect of winter housing becoming stronger as farm size increases. Whether badgers were culled or not explained about 5%, while the accuracy of the test employed to detect infected cattle explained less than 3% of the variance in the number of infected cattle

    Incorporating prior knowledge improves detection of differences in bacterial growth rate

    Get PDF
    BACKGROUND: Robust statistical detection of differences in the bacterial growth rate can be challenging, particularly when dealing with small differences or noisy data. The Bayesian approach provides a consistent framework for inferring model parameters and comparing hypotheses. The method captures the full uncertainty of parameter values, whilst making effective use of prior knowledge about a given system to improve estimation. RESULTS: We demonstrated the application of Bayesian analysis to bacterial growth curve comparison. Following extensive testing of the method, the analysis was applied to the large dataset of bacterial responses which are freely available at the web-resource, ComBase. Detection was found to be improved by using prior knowledge from clusters of previously analysed experimental results at similar environmental conditions. A comparison was also made to a more traditional statistical testing method, the F-test, and Bayesian analysis was found to perform more conclusively and to be capable of attributing significance to more subtle differences in growth rate. CONCLUSIONS: We have demonstrated that by making use of existing experimental knowledge, it is possible to significantly improve detection of differences in bacterial growth rate

    Male reproductive health and environmental xenoestrogens

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314

    Combined Boyden-Flow Cytometry Assay Improves Quantification and Provides Phenotypification of Leukocyte Chemotaxis

    Get PDF
    Chemotaxis has been studied by classical methods that measure chemotactic and random motility responses in vitro, but these methods do not evaluate the total number and phenotype of migrating leukocytes simultaneously. Our objective was to develop and validate a novel assay, combined Boyden-flow cytometry chemotaxis assay (CBFCA), for simultaneous quantification and phenotypification of migrating leukocytes. CBFCA exhibited several important advantages in comparison to the classic Boyden chemotaxis assay (CBCA): 1) improved precision (intra-assay coefficients of variation (CVs): CBFCA-4.7 and 4.8% vs. CBCA-30.1 and 17.3%; inter-observer CVs: CBFCA-3.6% vs. CBCA 30.1%); 2) increased recovery of cells, which increased assay to provide increased sensitivity; 3) high specificity for determining the phenotype of migrating/attracted leukocytes; and 4) reduced performance time (CBFCA 120 min vs. CBCA 265 min). Other advantages of CBFCA are: 5) robustness, 6) linearity, 7) eliminated requirement for albumin and, importantly, 8) enabled recovery of migrating leukocytes for subsequent studies. This latter feature is of great benefit in the study of migrating leukocyte subsets. We conclude that the CBFCA is a novel and improved technique for experiments focused on understanding leukocyte trafficking during the inflammatory response
    corecore