11 research outputs found

    Microgliosis: a double-edged sword in the control of food intake

    Get PDF
    Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it

    Postprandial hyperglycemia stimulates neuroglial plasticity in hypothalamic POMC neurons after a balanced meal

    Get PDF
    Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.Contrôle nerveux de la prise alimentaire et du métabolisme par une molécule neurale d'adhésion cellulaireISITE " BFCRéseau d'Innovation sur les Voies de Signalisation en Sciences de la Vi

    Effects of circadian cortisol on the development of a health habit

    Full text link
    International audienceGiven the impact of individuals' habits on health, it is important to study how behaviors can become habitual. Cortisol has been well documented to have a role in habit formation. This study aimed to elucidate the influence of the circadian rhythm of cortisol on habit formation in a real-life setting

    Exploring the Mechanisms of Recovery in Anorexia Nervosa through a Translational Approach: From Original Ecological Measurements in Human to Brain Tissue Analyses in Mice.

    No full text
    International audienceAnorexia nervosa (AN) is a severe eating disorder where caloric restriction, excessive physical activity and metabolic alterations lead to life-threatening situations. Despite weight restoration after treatment, a significant part of patients experience relapses. In this translational study, we combined clinical and preclinical approaches. We describe preliminary data about the effect of weight gain on the symptomatology of patients suffering from acute AN ( = 225) and partially recovered ( = 41). We measured more precisely physical activity with continuous cardiac monitoring in a sub-group ( = 68). Using a mouse model, we investigated whether a long-term food restriction followed by nutritional recovery associated or not with physical activity may differentially impact peripheral and central homeostatic regulation. We assessed the plasma concentration of acyl ghrelin, desacyl ghrelin and leptin and the mRNA expression of hypothalamic neuropeptides and their receptors. Our data show an effect of undernutrition history on the level of physical activity in AN. The preclinical model supports an important role of physical activity in the recovery process and points out the leptin system as one factor that can drive a reliable restoration of metabolic variables through the hypothalamic regulation of neuropeptides involved in feeding behavior

    Two phases model of ageing in mice: towards a better identification of age-related and late-life metabolic decline [Registered Report Stage 1 Protocol]

    No full text
    Abstract: Since being described in Drosophila melanogaster in 2011, the Smurf phenotype, has been seen to be evolutionarily conserved in nematode and zebrafish, and has helped to identify the discontinuous nature of ageing and predict impending death from natural causes as well as from environmental stresses. This phenotype allowed us to model ageing as being made of two successive phases : a phase A where individuals are healthy and have no risk of mortality but an age-dependent increasing risk of entering phase B, followed by a phase B where individuals show the so-called hallmarks of ageing and a high risk of death. We will test here whether these two consecutive phases of ageing separated by the Smurf transition are a conserved feature of ageing in the classical mammalian laboratory model Mus musculus. Thanks to a longitudinal longevity study using both males and females from two different mouse genetic backgrounds and by integrating physiological, metabolic and molecular measurements with the life history of approximately 150 mice, we are attempting to identify a phenotypic signature typical of the last phase of life, observable at any chronological age. Validating the two-phase ageing model in a mammalian organism would allow the high risk of imminent death to be better characterized in this model and would extend its implications to a broader range of species for aging research. </p

    Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction.

    No full text
    International audienceBACKGROUND: Obesity is considered a low-grade inflammatory state that improves with weight loss. In addition to acute-phase proteins, other cytokines might contribute to systemic inflammation. OBJECTIVE: Our objective was to compare serum concentrations of a large panel of inflammation-related factors in obese and normal-weight subjects and to determine kinetic changes induced by caloric restriction. DESIGN: The cohort comprised 14 normal-weight women and 51 obese women who were followed over 2 y after Roux-en-Y gastric bypass. Multiplexed proteomics were used to simultaneously assay 27 cytokines and growth factors in serum. RESULTS: Concentrations of interleukin (IL)-9, IL-1-receptor antagonist, IL-10, interferon-γ-inducible protein 10, macrophage inflammatory protein 1β, monocyte chemoattractant protein 1, IL-8, RANTES (regulated upon activation, normal T cell expressed and secreted), monokine induced by interferon-γ, and vascular endothelial growth factor were found to be elevated in obesity. IL-10 was further elevated in diabetic obese patients, whereas eotaxin was found to be higher only in diabetic subjects. After surgery, many factors showed a biphasic pattern of variation, decreasing sharply at month 3 before rising back to presurgical values at month 6; these changes closely tracked similar kinetic changes in calorie and carbohydrate intake. After 1 y, an overall reduction in cytokines accompanied the reduction in body mass index and an amelioration in metabolic status. CONCLUSIONS: Obesity is associated with elevated circulating concentrations of a large panel of cytokines. Coordinated kinetic changes during weight loss suggest an early influence of calorie and carbohydrate intakes, whereas a longer-term reduction in corpulence might prevail in regulating circulating cytokine concentrations. This trial is registered at clincaltrials.gov as NCT00476658

    New Insights in Anorexia Nervosa

    Get PDF
    International audienceAnorexia nervosa (AN) is classically defined as a condition in which an abnormally low body weight is associated with an intense fear of gaining weight and distorted cognitions regarding weight, shape, and drive for thinness. This article reviews recent evidences from physiology, genetics, epigenetics, and brain imaging which allow to consider AN as an abnormality of reward pathways or an attempt to preserve mental homeostasis. Special emphasis is put on ghrelino-resistance and the importance of orexigenic peptides of the lateral hypothalamus, the gut microbiota and a dysimmune disorder of neuropeptide signaling. Physiological processes, secondary to underlying, and premorbid vulnerability factors—the “pondero-nutritional-feeding basements”- are also discussed

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore