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Maintaining energy balance is essential for survival and health. This physiologi-

cal function is controlled by the brain, which adapts food intake to energy

needs. Indeed, the brain constantly receives a multitude of biological signals that

are derived from digested foods or that originate from the gastrointestinal tract,

energy stores (liver and adipose tissues) and other metabolically active organs

(muscles). These signals, which include circulating nutrients, hormones and neu-

ronal inputs from the periphery, collectively provide information on the overall

energy status of the body. In the brain, several neuronal populations can specifi-

cally detect these signals. Nutrient-sensing neurons are found in discrete brain

areas and are highly enriched in the hypothalamus. In turn, specialized brain cir-

cuits coordinate homeostatic responses acting mainly on appetite, peripheral

metabolism, activity and arousal. Accumulating evidence shows that hypothala-

mic microglial cells located at the vicinity of these circuits can influence the brain

control of energy balance. However, microglial cells could have opposite effects

on energy balance, that is homeostatic or detrimental, and the conditions for

this shift are not totally understood yet. One hypothesis relies on the extent of

microglial activation, and nutritional lipids can considerably change it.
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Introduction

Microglia are resident immune cells of the central ner-

vous system (CNS). Over a century ago, these cells

were defined as the ‘third element’ by Santiago Ramon

y Cajal in reference to the two first elements already

described, namely neurons and astrocytes. It was only

in the 1920s that Pio del Rio Hortega specifically char-

acterized microglial cells [1]. Arising from the embry-

onic yolk sac, microglia mostly colonize the brain

parenchyma early during embryonic development,

before the formation of the blood–brain barrier [2–4].
This occurs around the fourth week of gestation in

humans [4] and around embryonic day 9 in mouse [5].

Additional sources and maturation programmes could

coexist [6]. Microglia represent a long-lived cell popu-

lation that renews slowly and could persist the entire

lifespan of the organism [7,8].

Under physiological conditions, microglia are small

cells that exhibit fine and ramified branches oriented

radially from a small soma. Nevertheless, these cells

are highly dynamic and can undergo back and forth

morphological remodelling ranging from a ‘surveying’

ramified state (small soma with abundant motile pro-

cesses) to a ‘fully reactive’ ameboid state (rounded

swollen soma without branching) [9]. Although this

morphological plasticity is thought to be linked to the

reactive state [10,11], this association remains contro-

versial [12,13]. In an attempt of classifying microglial

reactive states, the concept of M1/M2 macrophage

polarization was initially applied to microglia [14–16].
More recently, however, high-throughput approaches

to study the remodelling of the whole microglial tran-

scriptome under different pathological conditions

failed to show evidence for microglia polarization

along an M1–M2 axis [17]. This concept that did not

consider microglia as long-lasting resident tissue

macrophages highly adapted to the CNS environment

[18] is now being abandoned [19]. Of note, the classifi-

cation of M1/M2 peripheral macrophage polarization

has now been also challenged [20–22].
Microglial cells ensure numerous functions in the

CNS. Principally, these cells regulate brain develop-

ment and contribute to brain homeostasis [23–25].
They can remove brain debris including synaptic com-

ponents and dead cells according to their phagocytic

ability [26,27]. Microglia are also ‘sentinels’ of the

brain that constantly monitor the local environment,

and they are the first line of defence in all CNS distur-

bances [28]. After acute injury or during a neuroin-

flammatory episode, microglia converge towards the

site of brain region damage to restore the local physio-

logical conditions. Short-term microglial reactivity is

believed to be neuroprotective [29], while a prolonged

microglial reaction can further increase tissue damage

and negatively impact disease outcome [30,31].

Recent advances in imaging techniques and genetic

tools have enabled increased study of microglial cells.

As a result, the concept of microglia heterogeneity has

been established [6,32,33]. For visualization, the most

widely used microglial markers are macrosialin

(CD68), receptor-type tyrosine-protein phosphatase C

(CD45), integrin subunit alpha M (CD11b), T-

lymphocyte activation antigen (CD86), fractalkine

receptor (CX3CR1), cell surface glycoprotein F4/80

and ionized calcium-binding adapter molecule 1 (IBA-

1). Although resident CNS microglia have different

origins with macrophages from the periphery, they

share the above-listed common markers. The recent

identification of two specific microglial markers,

namely the transmembrane protein 119 (TMEM119)

and the purinergic receptor P2Y12, now allows dis-

crimination between microglia and infiltrating CNS

macrophages. According to their morphology and

transcriptomic profiles, microglia may differ among

and within brain regions [6,34]. Transcriptomic analy-

ses using single-cell RNA sequencing further revealed

different molecular signatures between healthy micro-

glia, also called homeostatic microglia and disease-

associated microglia. Age and sex are factors that

might shape the microglial heterogeneity [35–37].
Beyond their role in injury, inflammation and neu-

rodegeneration, homeostatic microglia are involved in

numerous physiological brain functions, including

maturation of brain circuits during development, and

modulation of synaptic transmission and plasticity in

adults [13,38–52]. In this way, the role of microglia in

the neuronal circuits that control appetite and periph-

eral metabolism has recently emerged [53–56]. How-

ever, the exact role of microglia in the regulation of

food intake is not totally elucidated. Actually, it is

important to understand how microglia can sense

food-derived cues, and how these cells could in turn

drive feeding behaviour because failure in these two

distinct, interconnected and complementary tasks can

reduce the ability of the organism to finely match food

intake to energy needs, resulting in obesity, type 2 dia-

betes or eating disorders. In particular, several recent

works that will be presented below reveal that micro-

glia located in the hypothalamus, a brain area

involved in the regulation of energy balance, are

strongly and specifically activated by nutritional lipids.

Whether this process contributes to the macronutrient-

dependent control of food intake or promotes neu-

ronal dysfunction and accelerates the onset of obesity

is still poorly understood. This review summarizes the

2 The FEBS Journal (2022) � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Fat-induced microgliosis J. Salvi et al.



current state of the field and proposes directions for

future research.

Influence of nutrition on microglial
activity

Early life programming

Neonatal overfeeding in rats conferred by a reduced lit-

ter size increases the number of Iba-1-positive microglia

in the hypothalamic paraventricular nucleus [57,58].

This constitutive microgliosis exacerbates central

responses during immune challenges [57] and attenuates

adaptive responses to short-term high-fat diet (HFD) in

adults [58]. Diet-induced maternal obesity in rats also

causes constitutive microglial reactivity in the hip-

pocampus of offspring at birth and exacerbates micro-

glial reactivity after lipopolysaccharide (LPS) injection

in adults [59]. This has been further observed in mice, in

which maternal HFD alters transcriptional signature,

morphology and cell interaction of microglia in the hip-

pocampus of offspring [60]. Maternal HFD also acti-

vates Iba-1-positive microglia in the fetal hypothalamus

of macaques [61]. Although it is not known whether the

cellular effect found in the brain of nonhuman primates

has metabolic consequences, these data indicate that

nutritional programming of microglia during critical

neurodevelopmental periods is conserved across species.

Moreover, these studies suggest that fetal and neonatal

nutritional states prime responsiveness of hippocampic

and hypothalamic microglia in adult. Such hypothala-

mic microgliosis induced by maternal nutrition seems to

be sexually dimorphic. Actually, the microglial tran-

scriptional priming induced by maternal HFD in mice is

found in males only [60]. Moreover, after maternal

HFD, cell interactions between microglia and astrocytes

are distorted in males only [60]. On the contrary, neona-

tal overnutrition in rats does not cause sex-dependent

effects on microglia but increases reactivity of astrocytes

in males only [62]. An additional point is that reduction

in litter size in rats has no strong effect on Iba1-positive

cells in the whole hypothalamus during early life, but

considerably down-regulates Iba1 expression in adult

brain [62], indicating that the nutritional programming

of microglia during early life could have delayed molec-

ular effects.

Metabolic state

Thorough inspection of Iba1-positive cells in mouse

and rat brains according to the photic phase revealed

a rhythmic pattern of microglial reactivity in the med-

iobasal hypothalamus [63]. Interestingly, this dynamic

microglial reactivity is found in lean animals on stan-

dard diet but not in diet-induced obese animals. More-

over, the expression of clock genes in mouse microglial

cells from lean animals follows a circadian rhythmicity,

which is disturbed by chronic HFD [64,65]. These data

suggest that the microglial activity in the hypothala-

mus is coordinated conjointly by proper rhythmic

oscillations of clock genes and by the periodic nutrient

intake during normal physiology. Notably, postpran-

dial activation of microglia is exacerbated by HFD

[66]. Signalling pathways underlying microglial detec-

tion of daily changes in the metabolic state remain to

be elucidated. Circulating nutrients may be elements of

the microglial response. Indeed, a recent study suggests

that changes in blood glucose are sensed by microglia.

Specifically, insulin-induced hypoglycaemia provokes

microglial reactivity in the hypothalamus, which is

characterized– by an increased Iba1 immunostaining

with enlarged Iba1-positive cells [67]. Although hypo-

glycaemia is known to induce acidification of the

extracellular environment that can activate microglia

via acid sensing receptors, a direct sensing of glucose

deprivation by microglial cells in this model remains

possible. Interestingly, inhibition of hypoglycaemia-

induced microglial reactivity impairs the homeostatic

counter-regulatory responses, demonstrating the con-

tribution of microglia in the maintenance of energy

homeostasis in lean animals. However, this study

reveals a protective mechanism that is stimulated only

during a supra-physiologic drop of glycaemia, and its

role during normal physiology is still unknown. Micro-

glia are also activated during cachexia, a devastating

syndrome characterized by anorexia and degradation

of adipose tissues and muscles. Often associated with

pancreatic and stomach cancer, cachexia is a particular

metabolic state distinct from starvation [68,69]. Starva-

tion is a protein deficiency state often caused by lack

of food and can be reversed by refeeding. Cachexia is

induced by systemic inflammation and is not reversed

by refeeding. In a rodent model of cachexia, microglia

accumulate rapidly and specifically in the hypothala-

mus, precisely in the arcuate nucleus and the median

eminence, and not in the hippocampus nor the cortex

[70]. Microglia depletion using PLX5622 worsens anor-

exia and muscle catabolism, demonstrating once again

that microglial reactivity can be protective against a

strong energy imbalance. Interestingly, data mining

from human brain transcriptome databases found

enrichment of microglia genes in anorexia nervosa

(AN), a dramatic eating disorder, which is character-

ized by a profound energy imbalance with abnormally

low body weight [71]. In the murine anx/anx model of

anorexia, Iba1 immunoreactivity in the brain is
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increased, as well as the number of Iba1-positive cells

[72]. These studies identify microglia as an attractive

target in anorexia nervosa research. However, it is still

unknown whether microglia initiate, amplify or just

respond to AN. Finally, in rats, chronic consumption

of a ketogenic diet, a very low-carbohydrate and high-

fat diet that mimics starvation, modifies microglial

morphology, by increasing complexity and ramification

of Iba1-positive cells [73]. In vitro studies demonstrate

the high metabolic plasticity of microglia under starva-

tion and reveal their versatile intracellular metabolic

machinery [74]. Collectively, these studies show that

microglia are able to sense negative energy state. How-

ever, it is hard to define whether specific morphologi-

cal and functional microglial responses develop

according to the origin and/or nature of the metabolic

deficit.

Specific food products

Microglial activity can be significantly modified by

daily consumption of specific food products and phy-

tochemicals. There is a long list of micronutrients

whose effects on microglia morphology and count

have been demonstrated in vivo in experimental mod-

els. Most of these compounds are contained in plant-

based food and harbour health benefits. Among them

we found gypenosides (triterpenoids extracted from

Gynostemma pentaphyllum), magnolol (a polyphenol

extracted from Magnolia officinalis), catechins

(polyphenols enriched in green tea) and berberine (an

alkaloid extracted from Chinese herbs) [75–78]. Fish

oils enriched in omega-3 long-chain polyunsaturated

fatty acids (PUFA), such as docosahexaenoic acid

(DHA), have also powerful effects on microglia mor-

phology [79]. Importantly, low maternal intake of

omega-3 PUFA can alter brain neurodevelopment via

overactivation of microglial phagocytosis [80]. How-

ever, it remains to be established whether effects of

these food-derived compounds on microglia are direct

and/or associated with a better overall heath that

reduces brain inflammation.

Metabolic sensors expressed by microglia

Microglia exhibit many molecular receptors and trans-

porters that allow direct sensing of nutrients and meta-

bolic hormones. Notably, microglia are sensitive to

circulating leptin. This hormone acts on microglia via

its ObRb receptor, which can in turn induce IL-1b
release [81]. Leptin also modulates microglial reactivity

and potentiates the microglial response to LPS [82].

Genetic ablation of the leptin receptor in CX3CR1-

positive cells indicates that microglial leptin signalling

is necessary for microglia appearance and behaviour,

and correct development of anorectic pro-

opiomelanocortin (POMC) neurons, suggesting that

microglia are part of the central effect of leptin [83].

Expression of this receptor in microglia can change

according to the pathophysiological state. For

instance, the leptin receptor is upregulated in spinal

microglia during neuropathic pain and administration

of leptin antagonist inhibits the development of

microgliosis in the dorsal horn and brainstem [84]. The

glucagon-like peptide 1 (Glp-1) receptor is also

expressed in cultured microglia, and this receptor

could be a modulator of inflammation in the central

nervous system [85]. Interestingly, a 5-day treatment

with exendin-4, a Glp-1 receptor agonist, in diet-

induced obese mice reduces metabolic defects and

microglial reactivity in the hypothalamus [86]. The

mode of action of exendin-4 has not been established

in this study, but pair-fed experiments suggest that

exendin-4 can directly suppress diet-induced obesity

(DIO)-associated microglial reactivity. In addition, a

treatment with exendin-4 given after an experimental

stroke is neuroprotective in normal and aged T2D/

obese mice, by promoting the expression of anti-

inflammatory markers by microglia (Arg1, CD206,

Ym1/2) [87]. Microglia can also sense sugars. Micro-

glial expression of GLUT1 transporter that facilitates

the transport of glucose across the plasma membrane

might contribute to this capacity [88]. In addition,

GLUT5, a fructose transporter, seems to be exclusively

microglial in the brain [89]. Toll-like receptors (TLRs)

are other sensors that recognize pathogen-associated

molecular patterns (PAMPs) expressed by various

infectious agents. Microglia express several of these

receptors, including TLR2 and TLR4 [90,91]. These

receptors are sensitive not only to LPS that derive

mainly from gut microbiota [92], but also to specific

fatty acids [93,94]. Lipid sensing by microglia is also

ensured by the expression of GPR120, a receptor for

unsaturated long-chain free fatty acids, and the

lipoprotein lipase (LPL) [95,96].

Role of microglia in the control of
appetite

During the embryonic life, microglia seem to be crucial

for proper neurodevelopment of brain circuits that

control food intake. Elimination of microglial cells

from fetal brain in mice with PLX5622, a CSF1R inhi-

bitor, causes abnormal growth of pups and loss of

anorectic POMC neurons [97]. This study shows long-

term effects of embryonic microglia on energy balance
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and behaviour. Similarly, genetic ablation of leptin

receptor in CX3CR1-positive cells from the time of

conception modifies the morphology of microglia in

the hypothalamus of adult mice, and decreases the

number of POMC neurons and their projection fibres

[83]. Moreover, these mice become hyperphagic and

obese. In adult, depletion of microglia by PLX5622

does not affect food intake on standard diet but

reduces it on HFD [98], suggesting that microglia in

the adult brain are involved in the macronutrient-

dependent control of food intake. Interestingly, deple-

tion of microglia by PLX5622 rapidly alters the

expression of neuropeptides that control food intake in

the hypothalamus, showing a link between microglia

and hypothalamic neurons [66]. The role of microglia

in the regulation of appetite has been also studied after

direct pharmacological activation of brain TLR2

receptors. Activation of microglial TLR2 receptors

causes anorexia and weight loss in rats [91]. Intracra-

nial delivery of minocycline, which inhibits microglia

reactivity, or liposome-encapsulated clodronate, which

depletes microglia, mitigates TLR2-dependent anorexia

and body weight loss, indicating that the microglial

TLR2 pathway contributes to the control of food

intake. In addition, TLR4 activation by LPS inhibits

hypothalamic NPY neurons, and this response is

blunted by minocycline [90], suggesting that microglia

can directly modulate activity of neurons controlling

food intake. Additionally, targeted manipulation of

mitochondrial function in microglia alters food intake

in HFD-fed mice only (not in lean mice), suggesting

that the control of food intake probably varies accord-

ing to the activation state of microglia [99].

How do microglia influence the neural circuits con-

trolling feeding to cause the behavioural changes is not

elucidated. Although several microglia-derived sub-

stances with direct neuroactive properties have been

described [9], only few of them have been formally

identified as mediators within brain circuits regulating

food intake. For instance, microglia in the paraventric-

ular nucleus of the hypothalamus express the brain-

derived neurotrophic factor (BDNF), a factor that

suppresses food intake [100]. BDNF deficiency in

microglia leads to hyperphagia, obesity and insulin

resistance [100]. Moreover, targeted silencing of the

nuclear factor-jB (NF-jB) in microglia, a transcrip-

tion factor that triggers the inflammatory response,

prevents weight gain in HFD-fed mice [98]. According

to this study, proinflammatory factors might be

secreted by microglia during diet-induced obesity,

deregulating neurons that control energy homeostasis,

stimulating weight gain. Indeed, microglia can release

cytokines such as interleukin-1b (IL-1b), interleukin

(IL-6), and tumour necrosis factor-a (TNF-a), which

alter neuronal activity [101] and energy metabolism

[102–105]. Likewise, TNF-a from microglia alters neu-

ronal firing rate of hypothalamic POMC neurons and

increases body weight [63]. On the contrary, microglia

are the major, if not the only, source of IL-6 in the

brain, and IL-6 protects against obesity [106]. Finally,

microglial metabolism also interferes with synaptic

organization and leptin sensitivity in POMC neurons

[99]. This raises the possibility that metabolic end

products and/or ATP/AMP/adenosine might be ele-

ments of the microglia-to-neuron communication

underlying the regulation of food intake.

Fat-induced microgliosis: a specific
brain response to specific nutrients

Early studies revealed that chronic HFD in adult pro-

vokes an important inflammatory reaction in the

hypothalamus [107] that includes both a molecular

aspect, such as the secretion of proinflammatory fac-

tors, and a cellular aspect, such as the activation of

F4/80-positive immune cells [108]. Similarly, consump-

tion of HFD can activate Iba1-expressing cells in the

hypothalamus [109,110]. Whatever the exact origin of

these hypothalamic F4/80- and Iba1-positive cells that

acutely react to nutritional lipids, namely resident

microglia and/or newly recruited macrophages, it has

become clear that the hypothalamus undergoes drastic

cell remodelling in response to HFD that affects

microglial cells, in a process that we propose to call

fat-induced microgliosis (FIM; Table 1). Increased

Iba1 immunoreactivity has been evidenced in rodents

after 1 and 3 day(s) on HFD, and also after 1, 4, 6, 8,

10, 12, 16 or 24 weeks on HFD [63,86,96,99,109,111–
119]. During long-term HFD, Iba1-positive cells

become large with highly ramified processes

[63,86,109]. Such findings are variable according to the

histopathological scoring and even not always detected

[120–122]. Specific nutritional studies show that the

nature of fat largely influences this process. Indeed,

diets rich in saturated fatty acids have strong effects

on microglial reactivity in the hypothalamus [114]. For

instance, exposure to HFD supplemented in milk fat,

which is highly enriched in saturated fatty acids, pro-

duces enlargement of the size of Iba1-positive cells in

the mediobasal hypothalamus of mice [114]. This can-

not be noticed after a week, but it becomes highly sig-

nificant after a 4-week milk fat consumption.

Interestingly, intragastric gavage with clarified milk fat

can recapitulate this microglial process independently

of the calorie intake, showing that the nature of

ingested fat itself is a contributing factor. This applies,

5The FEBS Journal (2022) � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

J. Salvi et al. Fat-induced microgliosis



T
a
b
le

1
.
C
h
a
ra
c
te
ri
s
ti
c
s
o
f
fa
t-
in
d
u
c
e
d

m
ic
ro
g
lio
s
is

(F
IM

)
in

th
e

h
y
p
o
th
a
la
m
u
s
.
A
R
C
,
a
rc
u
a
te

n
u
c
le
u
s
;
C
D
,
c
h
o
w

d
ie
t;

C
x
3
c
r1
,
C
X
3
C

c
h
e
m
o
k
in
e

re
c
e
p
to
r
1
;
D
IO

,
d
ie
t-
in
d
u
c
e
d

o
b
e
s
it
y
;

e
G
F
P
,
e
n
h
a
n
c
e
d
g
re
e
n
fl
u
o
re
s
c
e
n
t
p
ro
te
in
;
H
C
H
F
,
h
ig
h
c
a
rb
o
h
y
d
ra
te

h
ig
h
fa
t;
H
F
D
,
h
ig
h
-f
a
t
d
ie
t;
H
T
,
h
y
p
o
th
a
la
m
u
s
;
Ib
a
1
,
io
n
iz
e
d
c
a
lc
iu
m
-b
in
d
in
g
a
d
a
p
to
r
m
o
le
c
u
le

1
;
IH
C
,
im

m
u
n
o
h
is
to
-

c
h
e
m
is
tr
y
;
K
c
a
l,
k
ilo

c
a
lo
ri
e
;
L
C
H
F
,
lo
w

c
a
rb
o
h
y
d
ra
te

h
ig
h
fa
t;
L
F
L
S
,
lo
w

fa
t
lo
w

s
u
g
a
r;
M
B
H
,
m
e
d
io
b
a
s
a
l
h
y
p
o
th
a
la
m
u
s
;
N
A
,
n
o
t
a
n
a
ly
s
e
d
;
P
2
Y
1
2
,
p
u
ri
n
e
rg
ic

re
c
e
p
to
r
P
2
Y
1
2
;
S
C
,
s
ta
n
d
a
rd

c
h
o
w
;
S
D
,
s
ta
n
d
a
rd

d
ie
t;
S
F
A
s
,
s
h
o
rt
-c
h
a
in

fa
tt
y
a
c
id
s
;
T
m
e
m
1
1
9
,
tr
a
n
s
m
e
m
b
ra
n
e
p
ro
te
in

1
1
9
;
V
M
H
,
v
e
n
tr
o
m
e
d
ia
l
n
u
c
le
u
s
o
r
th
e
h
y
p
o
th
a
la
m
u
s
;
W
T
,
w
ild
-t
y
p
e
.

R
e
f

A
n
im

a
ls

H
F
D

F
IM

C
o
m
p
o
s
it
io
n

D
u
ra
ti
o
n

B
ra
in

a
re
a

C
e
ll
m
a
rk
e
r

C
e
ll

n
u
m
b
e
r

C
e
ll
s
iz
e

C
e
ll
m
o
rp
h
o
lo
g
y

Y
i
2
0
1
7
[4
5
]

M
a
le

C
5
7
B
L
/6
J
R
j
m
ic
e

5
8
%

fa
t
(c
o
c
o
n
u
t
o
il,

s
o
y
a

b
e
a
n
o
il)

4
m
o
n
th
s

A
R
C

Ib
a
1

↗
N
A

↗
p
ro
c
e
s
s
e
s

G
a
o
2
0
1
4
[6
2
]

6
-w

e
e
k
o
ld

C
X
3
C
R
1
-e
G
F
P
m
ic
e

N
A

6
w
e
e
k
s

A
R
C

Ib
a
1
,
C
x
3
c
r1
-e
G
F
P

↗
N
A

N
A

C
5
7
B
L
/6

m
ic
e

1
0
w
e
e
k
s

Ib
a
1
,
C
D
6
8

↗
N
A

↗
ra
m
ifi
c
a
ti
o
n

L
e
p
o
b
/o
b
m
ic
e

2
w
e
e
k
s

Ib
a
1
,
C
D
6
8

↗
N
A

↗
ra
m
ifi
c
a
ti
o
n

L
e
p
rd

b
/d
b
m
ic
e

2
w
e
e
k
s

Ib
a
1
,
C
D
6
8

↗
N
A

=
ra
m
ifi
c
a
ti
o
n

C
a
n
s
e
ll
2
0
2
1
[7
1
]

8
-w

e
e
k
o
ld

m
a
le

C
5
7
B
L
/6
J

m
ic
e

4
0
.9
%

fa
t
(l
a
rd
)

•
3
h

•
6
h

A
R
C

Ib
a
1

N
A

N
A

•
↗

c
e
ll
c
a
p
a
c
it
a
n
c
e

•
↗

s
o
m
a
s
iz
e

V
a
ld
e
a
rc
o
s
2
0
1
7
[7
1
]

1
2
–1

6
-w

e
e
k
o
ld

m
a
le

C
5
7
B
L
/6

m
ic
e

4
2
%

fa
t
(m

ilk
fa
t)
O
r
6
0
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

4
w
e
e
k
s

M
E

•
Ib
a
1

•
P
2
Y
1
2

•
T
m
e
m
1
1
9

•
↗

•
↘

•
↘

N
A

N
A

A
R
C

•
Ib
a
1

•
P
2
Y
1
2

•
T
m
e
m
1
1
9

•
↗

•
↘

•
↘

N
A

N
A

V
M
H

•
Ib
a
1

•
P
2
Y
1
2

•
T
m
e
m
1
1
9

•
=

•
=

•
=

N
A

N
A

1
2
–1

6
-w

e
e
k
o
ld

m
a
le

C
x
3
c
r1
-

G
F
P
m
ic
e

•
1
w
e
e
k

•
4
w
e
e
k
s

•
8
w
e
e
k
s

M
B
H

•
C
x
3
c
r1
+
/P
2
Y
1
2
-

•
C
x
3
c
r1
+
/T
m
e
m
1
1
9

•
C
x
3
c
r1
+
/P
2
Y
1
2
-

•
C
x
3
c
r1
+
/T
m
e
m
1
1
9

•
C
x
3
c
r1
+
/P
2
Y
1
2
-

•
C
x
3
c
r1
+
/T
m
e
m
1
1
9

•
=

•
=

•
↗

•
↗

•
↗

•
↗

N
A

N
A

K
im

2
0
1
9
[7
3
]

1
0
-w

e
e
k
o
ld

m
a
le

C
x
3
c
r1

C
re
E
/

R
2
6
td
T
o
m
a
to

m
ic
e

4
5
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

•
3
d
a
y
s

•
7
d
a
y
s

•
8
w
e
e
k
s

A
R
C

C
x
3
c
r1
-t
d
T
o
m
a
to

•
=

•
↗

•
↗

•
↗

•
↗

•
↗

N
A

1
0
-w

e
e
k
o
ld

m
a
le

U
c
p
2
M
G
K
O
/

td
T
o
m
a
to

m
ic
e

•
3
d
a
y
s

•
7
d
a
y
s

•
8
w
e
e
k
s

•
=

•
=

•
=

•
=

•
↗

•
↗

N
A

Y
i
2
0
1
2
[7
5
]

M
a
le

C
5
7
B
L
/6

m
ic
e

5
8
%

fa
t
(c
o
c
o
n
u
t
o
il,

s
o
y
a

b
e
a
n
o
il)

1
6
w
e
e
k
s

A
R
C

Ib
a
1

N
A

↗
s
o
m
a

↗
ra
m
ifi
c
a
ti
o
n

6 The FEBS Journal (2022) � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Fat-induced microgliosis J. Salvi et al.



T
a
b
le

1
.
(C
o
n
ti
n
u
e
d
).

R
e
f

A
n
im

a
ls

H
F
D

F
IM

C
o
m
p
o
s
it
io
n

D
u
ra
ti
o
n

B
ra
in

a
re
a

C
e
ll
m
a
rk
e
r

C
e
ll

n
u
m
b
e
r

C
e
ll
s
iz
e

C
e
ll
m
o
rp
h
o
lo
g
y

B
e
rk
s
e
th

2
0
1
4
[7
6
]

M
a
le

C
5
7
B
L
/6

P
O
M
C
-t
a
u
-g
re
e
n

fl
u
o
re
s
c
e
n
t
p
ro
te
in

(G
F
P
)
m
ic
e

6
0
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

2
0
w
e
e
k
s

A
R
C

Ib
a
1

=
N
A

•
↗

a
c
ti
v
a
ti
o
n
s
c
o
re

•
↗

c
e
ll
b
o
d
ie
s

•
↗

ra
m
ifi
c
a
ti
o
n

K
le
in

2
0
1
9
[7
8
]

6
-w

e
e
k
o
ld

fe
m
a
le

C
5
7
B
L
/6
J

m
ic
e

6
0
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

1
2
w
e
e
k
s

A
R
C

Ib
a
1

↗
N
A

R
a
m
ifi
e
d
m
ic
ro
g
lia

+

a
m
e
b
o
id

m
ic
ro
g
lia

G
a
o
2
0
1
7
[7
9
]

1
0
-w

e
e
k
o
ld

W
T
m
ic
e

5
8
%

fa
t
+
s
u
c
ro
s
e

4
w
e
e
k
s

A
R
C

Ib
a
1

↗
↗

N
A

6
1
.9
%

fa
t
+
s
ta
rc
h

↗
↗

7
8
.7
%

fa
t

=
↗

9
2
.8
%

fa
t

=
=

V
a
ld
e
a
rc
o
s
2
0
1
4
[8
0
]

1
0
-w

e
e
k
o
ld

C
5
7
B
L
/6

m
ic
e

4
2
%

fa
t
(m

ilk
fa
t)

•
1
w
e
e
k

•
4
w
e
e
k
s

•
1
6
w
e
e
k
s

A
R
C

Ib
a
1

•
=

•
↗

•
↗

•
=

•
↗

•
↗

•
N
A

•
N
A

•
N
A

T
e
rr
ie
n
2
0
1
9
[8
1
]

1
2
-w

e
e
k
o
ld

m
a
le

C
5
7
B
L
/6
J

m
ic
e

4
5
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

•
3
d
a
y
s

•
8
w
e
e
k
s

A
R
C

Ib
a
1

•
=

•
=

•
↗

•
↗

N
A

1
2
-w

e
e
k
o
ld

m
a
le

W
S
B
/E
iJ

m
ic
e

•
3
d
a
y
s

•
8
w
e
e
k
s

•
=

•
=

•
↗

•
↘

•
N
A

•
N
A

•
a
m
e
b
o
id

m
ic
ro
g
lia

•
N
A

T
h
a
le
r
2
0
1
2
[8
2
]

M
a
le

L
o
n
g
-E
v
a
n
s
ra
ts

6
0
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

•
1
d
a
y

•
3
d
a
y
s

•
7
d
a
y
s

•
1
4
d
a
y
s

A
R
C

Ib
a
1

•
↗

•
↗

•
↗

•
↗

•
↗

•
↗

•
↗

•
↗

W
a
is
e
2
0
1
5
[8
3
]

6
-w

e
e
k
o
ld

m
a
le

C
5
7
B
L
/6
J

m
ic
e

6
0
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

1
d
a
y

A
R
C

Ib
a
1

↗
↗

•
R
o
u
n
d
e
d

•
↗

ra
m
ifi
c
a
ti
o
n

Y
in

2
0
1
8
[8
4
]

1
2
-w

e
e
k
o
ld

m
a
le

C
5
7
B
L
/6
J

m
ic
e

4
5
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

•
3
m
o
n
th
s

•
6
m
o
n
th
s

•
9
m
o
n
th
s

H
T

Ib
a
1

•
=

•
=

•
↗

N
A

N
A

N
a
zn
in

2
0
1
5
[8
5
]

6
-w

e
e
k
-o
ld

m
a
le

C
5
7
B
L
/6
J

m
ic
e

6
0
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

1
2
w
e
e
k
s

H
T

Ib
a
1
,
C
D
1
1
b
,
C
D
8
6

↗
N
A

•
R
o
u
n
d
e
d

•
↗

ra
m
ifi
c
a
ti
o
n

H
a
rr
is
o
n
2
0
1
9
[8
6
]

M
a
le

C
5
7
B
L
/6
J
R
j
m
ic
e

5
8
%

fa
t
(c
o
c
o
n
u
t
o
il,

s
o
y
a

b
e
a
n
o
il)

2
2
w
e
e
k
s

A
R
C

Ib
a
1

=
N
A

•
=

D
a
ly

2
0
2
0
[8
7
]

8
-w

e
e
k
o
ld

m
a
le

a
n
d
fe
m
a
le

C
5
7
B
L
/6
J
m
ic
e

4
5
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

1
4
w
e
e
k
s

H
T

Ib
a
1

N
A

N
A

•
↘

c
e
ll
c
o
m
p
le
x
it
y
(o
n
ly

in
m
a
le
)

•
=
p
ro
c
e
s
s
e
s
le
n
g
th

•
=
b
ra
n
c
h
n
u
m
b
e
rs

•
=
c
e
ll
s
h
a
p
e

A
n
d
r� e

2
0
1
7
[9
1
]

7
-w

e
e
k
o
ld

m
a
le

C
5
7
B
L
/6
J

m
ic
e

6
0
%

fa
t
(l
a
rd
,
s
o
y
a
b
e
a
n
o
il)

3
w
e
e
k
s

A
R
C

Ib
a
1

↗
↗

s
o
m
a

N
A

7The FEBS Journal (2022) � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

J. Salvi et al. Fat-induced microgliosis



to a lesser degree, to coconut oil but not to olive oil. Lard-

based diets especially can accelerate this process [116]. On

the contrary, C57BL/6 mice fed with a high-cholesterol/

high-salt Paigen diet for 8 weeks do not have major

changes in hypothalamus and brain vessels, while ApoE�/

� mice develop strong cerebrovascular inflammation and

atherosclerosis, together with a general microglia activa-

tion in the whole brain under these nutritional conditions

[123], supporting the idea that only some specific nutri-

tional lipids are microglial activators. Moreover, com-

bined overconsumption of fat and sugars amplifies FIM

[113]. Interestingly, regular physical exercise can prevent

or reduce FIM under chronic HFD [112,118,124], suggest-

ing that intense utilization of substrates may limit the acti-

vation of microglia.

In addition to the physical enlargement of individual

microglia following HFD, HFD-induced enhanced

Iba1-immunoreactivity in the hypothalamus also

includes an increase in the number of Iba1-positive

cells [63,86,96,98,113,114,116,117,125,126] (Table 1).

Consequences of FIM

Iba1 reactivity during long-term HFD is associated with

strong and specific deposition of IgG in hypothalamic

microglia [109]. The exact mechanism underlying this diet-

induced IgG deposition in the hypothalamus is not eluci-

dated. The HFD-associated rise of blood IgG could have

reached the brain and stimulated the phagocytic activity

of microglia, or the HFD-induced activation of microglia

could have boosted its scavenging function, independently

of any IgG stimulation. Both pathways can promote IgG

accumulation in the hypothalamus. In all cases, the patho-

physiological impact of IgG accumulation in the brain

during HFD is not known yet. In particular, it is unknown

whether this process accelerates the HFD-induced alter-

ation of hypothalamic control of energy balance or

whether this represents an adaptive response. Chronic

HFD also increases levels of advanced glycation end prod-

ucts (AGEs) in the brain, which are biomarkers of ageing

and many neurodegenerative diseases. It has been pro-

posed that microglia are responsible of the uptake clear-

ance of AGEs secreted by hypothalamic neurons under

HFD [113]. Indeed, disruption of this uptake reduces

microgliosis and hypothalamic inflammation, indicating

that AGE clearance enhances FIM. These data support

the idea that hypothalamic microglia protect the brain by

removing age-related and obesity-induced accumulation

of damage-associated molecular patterns (DAMPs), but

the functional counterpart on energy metabolism is not

clear. Do reactive microglia aggravate diet-induced obesity

or represent an adapted response that aims to maintain

energy balance?T
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Several inflammatory markers are present in reactive

hypothalamic microglia when consuming HFD for long

term [86,113,114], and this is associated with cellular stress

in neurons at the vicinity [114,116]. Microglial depletion in

mouse brain using genetics and pharmacology, that is

using diphtheria toxin receptor-mediated conditional and

targeted cell ablation and Ki20227 (a CSF1R antagonist),

clearly abolishes hypothalamic inflammation and neuronal

stress induced by 3-day gavage with clarified milk fat

[114]. In addition, microglial depletion in mouse brain by

PLX5622 enhances leptin signalling and limits food intake

and body weight gain induced by 8-day gavage with clari-

fied milk fat [114]. These data indicate that FIM induced

by saturated fatty acid consumption can alter the control

of energy homeostasis. In addition, after chronic HFD,

microglia shift to a pathological state where they prema-

turely deplete synaptic numbers in the hippocampus, a

brain region that serves a critical function in memory and

cognition [111]. Inhibition of FIM by minocycline or by

knockdown of Cx3cr1 prevents dendritic spine loss in hip-

pocampic neurons and cognitive decline induced by HFD.

Such manipulations of microglia do not influence cogni-

tive performance in nonobese mice, suggesting that micro-

glia play a detrimental role in cognition only when

activated.

FIM could also have beneficial effects on energy bal-

ance. This possibility is supported by a recent study in

mice carrying deficiency of lipoprotein lipase (LPL) in

microglia [96]. These animals have altered basal microglial

metabolism and immune responsiveness, showing firstly

that microglial lipid sensing is crucial for brain functioning

and homeostasis. Moreover, deletion of microglial LPL

accelerates the onset of diet-induced obesity and increases

the HFD-induced loss of POMC neurons, showing sec-

ondly that microglial lipid sensing is also important for

brain control of energy homeostasis during HFD chal-

lenge. Strikingly, disruption of microglial LPL signifi-

cantly attenuates FIM, showing finally that metabolic

alterations are aggravated when microglia are less reactive.

These data suggest that microglia can have homeostatic

function in energy balance.

Taken together, these studies show a dual role of

FIM. This duality might depend on the progression of

the pathological state with an early adaptive function

during HFD exposure.

Specificities of FIM

Metabolic state

DIO models develop strong Iba1 immunoreactivity in

the hypothalamus following HFD exposure. Interest-

ingly, such Iba1 hypersignal in the hypothalamus is

not seen in genetically obese mice including ob/ob mice

[86]. Similarly, HFD-induced IgG accumulation in the

brain associated with microglial cells or IL-1b overex-

pression in microglia is not seen in the hypothalamus

of ob/ob obese mice [86,109]. These findings suggest

that dietary lipid consumption but not obesity or adi-

posity per se is a causal element in this hypothalamic

response. Remarkably, Iba1 immunoreactivity in the

hypothalamus is low in lean mice and variable accord-

ing to the prandial state, while permanently elevated in

DIO mice [63,66].

Localization

Expansion and enlargement of Iba1-positive cells during

HFD are most evident in the hypothalamus [125,126].

This response seems to be restricted to the mediobasal part

of hypothalamus, in particular in the arcuate nucleus

[86,127], and more marked in the caudal part of this

nucleus [128]. As well, infiltration of macrophages in

response to HFD is found in the hypothalamus but not in

the cortex [127]. Similarly, the increased F4/80 immunore-

activity induced by chronic HFD is detected in the arcuate

nucleus of the hypothalamus but not in frontal, parietal,

occipital and cerebellar cortices [108]. FIM has been also

observed in the hippocampus [96,111,121,129], the cerebel-

lum [122] and the brainstem. In the latter, FIM occurs

specifically in the nucleus of the solitary tract (NTS),

which is the first relay for visceral (vagal) and taste affer-

ents towards the brain, and in the dorsal motor nucleus of

the vagus (DMV), which is the origin of (vagal)

gastrointestinal-projecting motor neurons [130,131].

Moreover, in the peripheral nervous system, FIM has been

detected in nodose ganglia, sources of the vagal afferents

[117,119,132]. These data highlight the relative spatial

specificity of FIM that affects mainly nervous structures

controlling feeding behaviour, as it has been observed for

HFD-induced astrogliosis [133].

Cell expansion

HFD increases the number of Iba1-positive cells in the

hypothalamic parenchyma of rodents

[63,86,98,114,116,125–127]. However, it is important to

note that Iba1 immunolabelling can detect both resident

microglia and infiltrated macrophages. Using a series of

specific microglial markers including TMEM119 and

P2Y12, it has been shown that the number of residentmicro-

glial cells in the mediobasal hypothalamus is not increased

after 4-week HFD [98]. Conversely, HFD-fed mice had a

significant rise in CD169-positive cells in the hypothalamus.

CD169 is a marker of monocyte-derived cells but not brain

microglia. The increase in CD169-positive cells is not seen
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after 1 week on HFD but becomes significant at 4 and

8 weeks on HFD. Transplantation of GFP-tagged bone

marrow-derived monocytes in mice allowed tracking of cir-

culating myeloid cells, demonstrating their infiltration in the

hypothalamus during HFD [98]. This study, which is in line

with others [127,134], further indicates that recruited cells

can activate resident microglia. Analysis of chimeric animals

reveals also that local perivascular and meningeal macro-

phages, which are CD68pos TMEM119neg GFPneg cells, can

also be recruited in the hypothalamus during HFD [98].

Complementary analyses using BrdU staining and/or Ki67

proliferative marker did not report strong induction of pro-

liferation of Iba1-positive cells in the brain during HFD

[86,98,135]. All these studies suggest that the increase in the

overall number of microglial cells in the hypothalamus fol-

lowing HFD does not involve proliferation of resident cells

but may be due to a large infiltration of circulating cells and

recruitment of distant brain cells.

However, the origin of the HFD-induced increase in

the number of Iba1-positive cells in the hypothalamus is

still a matter of debate. Indeed, recent works do not

reveal any infiltration of monocytes in the hypothala-

mus under long-term HFD [126,136]. The reasons for

the discrepancies between these studies are unclear but

might include technical issues (i.e. impact of irradiation

for cell transplantation studies on the integrity of the

blood–brain barrier), differences in models (i.e. nature

of diets, metabolic state) and time point of analysis, as

inflammatory diseases are progressive with episodic

flare-ups and life span of myeloid cells varies according

to their differentiation state and activity [137].

In addition, some studies reported that some Iba1-

positive cells within the hypothalamic parenchyma could

proliferate in response to long-term HFD [125,126]. Such

seemingly conflicting result may account for the expansion

of resident hypothalamic perivascular and parenchymal

macrophages, as already reported after 2, 4 or 20 weeks of

HFD [138], and (perhaps) also of newly infiltrated macro-

phages that can undergo rapid proliferation in situ, as it

happens in the periphery during chronic HFD [139,140].

Therefore, additional studies are needed to better under-

stand the cellular origin of the hypothalamic Iba-1-

positive cell pool that expanses under HFD. Tracking

these cells requires invariable cell phenotype and stable

expression of identity markers, which might not be the

case over the course of the HFD feeding.

Sex specificity

As mentioned above, depletion of microglia during

neurodevelopment causes loss of POMC neurons,

revealing the importance of microglia in brain feeding

circuits [97]. Interestingly, this treatment also promotes

hyperactivity and anxiety, but this behaviour develops

in females only [97]. Moreover, cell interactions

between microglia and astrocytes are distorted in

males but not in females after maternal HFD [60].

These observations support the concept that early pro-

gramming of microglia has functional and behavioural

outcomes with substantial sexual differences [141,142].

Interestingly, male microglia are more likely to

express proinflammatory genes than female microglia

[35,141,142]. The sexual dimorphism of microglia

could be explained by the perinatal exposure to sex

steroid hormones [35,143]. Anti-inflammatory effects

of oestrogens on microglia still persist during adult life

[144,145]. At the molecular level, the oestrogen recep-

tor alpha (ERa) contributes to the determination of

microglial immunocompetence during neurodevelop-

mental stages and during adult life. The corollary is

that the loss of oestrogens at menopause promotes

phenotypic changes in female microglia with ageing

[145]. These studies indicate that adult microglia show

a sexual dimorphism, which may explain differences in

the prevalence of some neurological disorders [35,146].

Under normal nutritional condition, basal morphol-

ogy of Iba1-positive cells in the hypothalamus differs

according to the sex [62]. Dynamic morphological

reactivity of microglia in response to HFD is also sex-

dependent: hypothalamic FIM has been observed in

the hypothalamus of male but not female mice [127].

Unlike male microglia, microglia from HFD-fed

female mice showed no increase in proinflammatory

Il1b and Ikbkb gene expression, indicating that female

mice are protected from HFD-induced hypothalamic

microglial activation [147]. Sex specificity in microglial

CX3CR1 signalling seems to be a major determinant

of FIM [147]. In particular, female CX3CR1 knockout

mice develop a ‘male-like’ FIM in the hypothalamus

and an increased susceptibility to diet-induced obesity.

Species specificity

Contrary to C57Bl/6J mice, Wsb/EiJ mice do not

develop intense FIM in the arcuate nucleus of

hypothalamus [115]. As Wsb/EiJ mice are resistant to

DIO, it has been proposed that these mice have more

efficient homeostatic systems that manage lipid over-

load, use and storage, in relation to a higher central

sensitivity to nutritional and metabolic cues. However,

it is also still unknown whether increased FIM in

C57Bl/6J mice reveals a proinflammatory response that

accelerates the onset of obesity, or a defensive homeo-

static response intending to restore the rupture in

energy balance, which is not necessary in Wsb/EiJ

mice.
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Pathophysiological specificity

Phagocytosis, chemotaxis, immune cell recruitment

and phenotypic changes of microglia are not restricted

to high-fat feeding. Many neuroinflammatory states,

including ageing, Alzheimer’s disease (AD), amy-

otrophic lateral sclerosis, Parkinson’s disease, X-linked

adrenoleukodystrophy and multiple sclerosis, share

these morphological and functional microglial changes

[148,149]. Moreover, a common transcriptomic pro-

gramme in activated microglia, named disease-

associated microglial (DAM) signature, has been

found in neuroinflammatory diseases and ageing

[148,150]. Nevertheless, FIM appears as a singular,

and may be even paradoxical, biological response that

associates extension and ramification of the microglial

processes along with inflammatory activation

(Table 1). Whether FIM adopts a DAM signature

needs to be determined.

Future directions

Current data show that FIM occurs in specific brain

areas that control food intake and maintain energy

homeostasis. What remains to be determined is whether

the distinct microglial behaviour in these areas is due to

a particular microenvironment exposing microglia to

specific signals, or whether microglia located in these

areas constitute a singular subpopulation with specific

molecular receptors that provide them with unique reac-

tiveness or both. Comparative studies using targeted

molecular analyses, such as single-cell RNA sequencing,

on distinct pools of microglia from brain areas that

undergo FIM or not would help to address this issue.

Spatial heterogeneity of microglia during homeostasis in

the adult healthy brain is still a matter of debate [151].

Nevertheless, microglial heterogeneity has been demon-

strated in the context of Alzheimer’s disease by RNA-

seq [152]. The analysis reveals that only one specific

microglial subset is altered in Alzheimer’s disease, indi-

cating the existence of specific microglial responses in

the diseased brain.

Mechanistic studies in healthy animals fed a stan-

dard diet reveal that resident microglia modulate the

activity of neurons involved in the control of energy

homeostasis and contribute to the regulation of food

intake. However, the role of microglia when activated

is still debated. As any other inflammatory responses

that operate during severe disturbances of homeostasis,

FIM could have different physiological purpose and

pathological consequences according to the intensity

and the duration of the stressor [153]. Thus, whether

FIM is a deleterious response that promotes metabolic

imbalance or rather an adaptive response that normal-

izes energy balance is still unsolved. Maybe the answer

is twofold depending first on the duration of the HFD

exposure and the possible repetition of the HFD epi-

sodes, and second on the age and the metabolic state

of the animals. Again, comparative studies at different

time points under HFD would be helpful to settle the

matter.
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