15 research outputs found

    Ethylene and phloem signals are involved in the regulation of responses to Fe and P deficiencies in roots of strategy I plants

    Get PDF
    Iron (Fe) and phosphorus (P) are two essential mineral nutrients whose acquisition by plants presents important environmental and economic implications. Both elements are abundant in most soils but scarcely available to plants. To prevent Fe or P deficiency dicot plants initiate morphological and physiological responses in their roots aimed to specifically acquire these elements. The existence of common signals in Fe and P deficiency pathways suggests the signaling factors must act in conjunction with distinct nutrient-specific signals in order to confer tolerance to each deficiency. Previous works have shown the existence of cross talk between responses to Fe and P deficiency, but details of the associated signaling pathways remain unclear. Herein, the impact of foliar application of either P or Fe on P and Fe responses was studied in P- or Fe-deficient plants of Arabidopsis thaliana, including mutants exhibiting altered Fe or P homeostasis. Ferric reductase and acid phosphatase activities in roots were determined as well as the expression of genes related to P and Fe acquisition. The results obtained showed that Fe deficiency induces the expression of P acquisition genes and phosphatase activity, whereas P deficiency induces the expression of Fe acquisition genes and ferric reductase activity, although only transitorily. Importantly, these responses were reversed upon foliar application of either Fe or P on nutrient-starved plants. Taken together, the results reveal interactions between P- and Fe-related phloem signals originating in the shoots that likely interact with hormones in the roots to initiate adaptive mechanisms to tolerate deficiency of each nutrient

    A shoot Fe signaling pathway requiring the OPT3 transporter controls GSNO reductase and ethylene in arabidopsis thaliana roots

    Get PDF
    Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed

    Self-Regulation Questionnaire (SRQ) in Spanish Adolescents: Factor Structure and Rasch Analysis

    Get PDF
    Background: The Self-Regulation Questionnaire (SRQ) is an instrument employed to measure the generalized ability to regulate behavior. Self-regulation is related to the management of risk behaviors, such as drug abuse or anti-social behaviors. The SRQ has been used in young adult samples. However, some risk behaviors are increasing among adolescents. The aim of this study is to examine the psychometric properties of the SRQ among Spanish adolescents. Methods: 845 high-school Spanish students (N = 443; 52.43% women), from 12 to 17 years old and ranging from the first to the fourth year of studies, completed the SRQ. A confirmatory factor analysis (CFA) was carried out in order to establish structural adequacy. Then, a study of each subscale was conducted using the Rasch model for dimensionality, adjustment of the sample questions, functionality of the response categories, and reliability. Results: While controlling for method effects, the data showed goodness of fit with the four-factor solution and 17 items (Goal setting, Decision making, Learning from mistakes, and Perseverance), and the four sub-scales were unidimensional according to the Rasch analysis. The Rasch model itself was shown to be reliable, but not at the level of persons. This means that the instrument was not sensitive enough to discriminate people with different self-regulation levels. Discussion: These results support the use of the Spanish Short SRQ in adolescent samples. Some suggestions are made to improve the instrument, particularly in its application as a diagnostic tool

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Restoration of soils contaminated by heavy metals: a strategy based on waste recycling and bioremediation by symbiotic and saprobic microorganisms

    No full text
    Resumen del poster presentado en: I Jornada de Juventud Investigadora EstaciĂłn Experimental del ZaidĂ­n. EEZ Granada; 20 noviembre (2022)This work was supported by the Research Project RTI 2018-094327-B-I00 (Ministry of Science, Innovation and Universities)]

    The role of gender and age in the emotional well-being outcomes of young adults

    Get PDF
    Young adults face different stressors in their transition to college. Negative emotions such as stress can emerge from the demands they face. This study aimed at gaining an improved understanding of the role that gender and age play in the well-being of young adults. Coping strategies, resilience, self-regulation, and positivity were selected as indicators of well-being. Descriptive and inferential analysis have been conducted. Results show that well-being varies significantly with age and gender. Gender was predominantly involved in the acquisition of the well-being outcomes, highly predicting problem-focused coping strategies. No interaction effects were found between gender and age. An improved understanding of the developmental factors involved in well-being outcomes will enlighten future interventions aimed at improving young people’s resources to face adversity

    A shoot Fe signaling pathway requiring the OPT3 transporter controls GSNO reductase and ethylene in arabidopsis thaliana roots

    No full text
    Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed
    corecore