16 research outputs found

    Development of an atmospheric N2O isotopocule model and optimization procedure, and application to source estimation

    Get PDF
    This paper presents the development of an atmospheric N2O isotopocule model based on a chemistry-coupled atmospheric general circulation model (ACTM). We also describe a simple method to optimize the model and present its use in estimating the isotopic signatures of surface sources at the hemispheric scale. Data obtained from ground-based observations, measurements of firn air, and balloon and aircraft flights were used to optimize the long-term trends, interhemispheric gradients, and photolytic fractionation, respectively, in the model. This optimization successfully reproduced realistic spatial and temporal variations of atmospheric N2O isotopocules throughout the atmosphere from the surface to the stratosphere. The very small gradients associated with vertical profiles through the troposphere and the latitudinal and vertical distributions within each hemisphere were also reasonably simulated. The results of the isotopic characterization of the global total sources were generally consistent with previous one-box model estimates, indicating that the observed atmospheric trend is the dominant factor controlling the source isotopic signature. However, hemispheric estimates were different from those generated by a previous two-box model study, mainly due to the model accounting for the interhemispheric transport and latitudinal and vertical distributions of tropospheric N2O isotopocules. Comparisons of time series of atmospheric N2O isotopocule ratios between our model and observational data from several laboratories revealed the need for a more systematic and elaborate intercalibration of the standard scales used in N2O isotopic measurements in order to capture a more complete and precise picture of the temporal and spatial variations in atmospheric N2O isotopocule ratios. This study highlights the possibility that inverse estimation of surface N2O fluxes, including the isotopic information as additional constraints, could be realized

    What Can 14CO Measurements Tell Us about OH?

    Get PDF
    The possible use of 14CO measurements to constrain hydroxyl radical (OH) concentrations in the atmosphere is investigated. 14CO is mainly produced in the upper atmosphere from cosmic radiation. Measurements of 14CO at the surface show lower concentrations compared to the upper atmospheric source region, which is the result of oxidation by OH. In this paper, the sensitivity of 14CO mixing ratio surface measurements to the 3-D OH distribution is assessed with the TM5 model. Simulated 14CO mixing ratios agree within a few molecules 14COcm-3 (STP) with existing measurements at five locations worldwide. The simulated cosmogenic 14CO distribution appears mainly sensitive to the assumed upper atmospheric 14C source function, and to a lesser extend to model resolution. As a next step, the sensitivity of 14CO measurements to OH is calculated with the adjoint TM5 model. The results indicate that 14CO measurements taken in the tropics are sensitive to OH in a spatially confined region that varies strongly over time due to meteorological variability. Given measurements with an accuracy of 0.5 molecules 14COcm-3 STP, a good characterization of the cosmogenic 14CO fraction, and assuming perfect transport modeling, a single 14CO measurement may constrain OH to 0.2¿0.3×106 moleculesOHcm-3 on time scales of 6 months and spatial scales of 70×70 degrees (latitude×longitude) between the surface and 500 hPa. The sensitivity of 14CO measurements to high latitude OH is about a factor of five higher. This is in contrast with methyl chloroform (MCF) measurements, which show the highest sensitivity to tropical OH, mainly due to the temperature dependent rate constant of the MCF¿OH reaction. A logical next step will be the analysis of existing 14CO measurements in an inverse modeling framework. This paper presents the required mathematical framework for such an analysis.JRC.H.2-Climate chang

    Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination

    Get PDF
    An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol parameters. On the other hand, if the cloud-screening procedure is too strict, too many clear sky cases, especially near-cloud scenes, will falsely be flagged cloudy. The detrimental effects of cloud contamination as well as the importance of aerosol cloud interactions that can be studied in these near-cloud scenes call for new approaches to cloud screening. Multi-angle multi-wavelength photopolarimetric measurements have a unique capability to distinguish between scattering by (liquid) cloud droplets and aerosol particles. In this paper the sensitivity of aerosol retrievals from multi-angle photopolarimetric measurements to cloud contamination is investigated and the ability to intrinsically filter the cloud-contaminated scenes based on a goodness-of-fit criteria is evaluated. Hereto, an aerosol retrieval algorithm is applied to a partially clouded over-ocean synthetic data set as well as non-cloud-screened over-ocean POLDER-3/PARASOL observations. It is found that a goodness-of-fit filter, together with a filter on the coarse mode refractive index (m(r)(coarse) > 1.335) and a cirrus screening, adequately rejects the cloud-contaminated scenes. No bias or larger SD are found in the retrieved parameters for this intrinsic cloud filter compared to the parameters retrieved in a priori cloud-screened data set (using MODIS/AQUA cloud masks) of PARASOL observations. Moreover, less high-aerosol load scenes are misinterpreted as cloud contaminated. The retrieved aerosol optical thickness, single scattering albedo and Angstrom exponent show good agreement with AERONET observations. Furthermore, the synthetic retrievals give confidence in the ability of the algorithm to correctly retrieve the micro-physical aerosol parameters

    Influence of 3D effects on 1D aerosol retrievals in synthetic, partially clouded scenes

    No full text
    An important challenge in aerosol remote sensing is to retrieve aerosol properties in the vicinity of clouds and in cloud contaminated scenes. Satellite based multi-wavelength, multi-angular, photo-polarimetric instruments are particularly suited for this task as they have the ability to separate scattering by aerosol and cloud particles. Simultaneous aerosol/cloud retrievals using 1D radiative transfer codes cannot account for 3D effects such as shadows, cloud induced enhancements and darkening of cloud edges. In this study we investigate what errors are introduced on the retrieved optical and micro-physical aerosol properties, when these 3D effects are neglected in retrievals where the partial cloud cover is modeled using the Independent Pixel Approximation. To this end a generic, synthetic data set of PARASOL like observations for 3D scenes with partial, liquid water cloud cover is created. It is found that in scenes with random cloud distributions (i.e. broken cloud fields) and either low cloud optical thickness or low cloud fraction, the inversion algorithm can fit the observations and retrieve optical and micro-physical aerosol properties with sufficient accuracy. In scenes with non-random cloud distributions (e.g. at the edge of a cloud field) the inversion algorithm can fit the observations, however, here the retrieved real part of the refractive indices of both modes is biased

    Characteristics, sources and evolution of fine aerosol (PM1) at urban, coastal and forest background sites in Lithuania

    No full text
    The chemical and isotopic composition of organic aerosol (OA) samples collected on PM1 filters was determined as a function of desorption temperature to investigate the main sources of organic carbon and the effects of photochemical processing on atmospheric aerosol. The filter samples were collected at an urban (54°38′ N, 25°18′ E), coastal (55°55′ N, 21°00′ E) and forest (55°27′ N, 26°00’ E) site in Lithuania in March 2013. They can be interpreted as winter-time samples because the monthly averaged temperature was −4 °C. The detailed chemical composition of organic compounds was analysed with a thermal desorption PTR-MS. The mass concentration of organic aerosol at the forest site was roughly by a factor of 30 lower than at the urban and coastal site. This fact could be an indication that in this cold month the biogenic secondary organic aerosol (SOA) formation was very low. Moreover, the organic aerosol collected at the forest site was more refractory and contained a larger fraction of heavy molecules with m/z > 200. The isotopic composition of the aerosol was used to differentiate the two main sources of organic aerosol in winter, i.e. biomass burning (BB) and fossil fuel (FF) combustion. Organic aerosol from biomass burning is enriched in 13C compared to OA from fossil fuel emissions. δ13COC values of the OA samples showed a positive correlation with the mass fraction of several individual organic compounds. Most of these organic compounds contained nitrogen indicating that organic nitrogen compounds formed during the combustion of biomass may be indicative of BB. Other compounds that showed negative correlations with δ13COC were possibly indicative of FF. These compounds included heavy hydrocarbons and were on the average less oxidized than the bulk organic carbon. The correlation of δ13COC and the O/C ratio was positive at low but negative at high desorption temperatures at the forest site. We propose that this might be due to photochemical processing of OA. This processing can lead to accumulation of carbon in the more refractory organic fraction that is depleted in 13C compared with the less refractory organic fraction. Detailed laboratory experiments are necessary to further investigate the aging of aerosol particles before firm conclusions can be drawn

    Carbon isotope ratios suggest no additional methane from boreal wetlands during the rapid Greenland Interstadial 21.2

    No full text
    Samples from two Greenland ice cores (NEEM and NGRIP) have been measured for methane carbon isotope ratios (δ13C-CH4) to investigate the CH4 mixing ratio anomaly during Greenland Interstadial (GI) 21.2 (85,000 years before present). This extraordinarily rapid event occurred within 150 years, comprising a CH4 mixing ratio pulse of 150 ppb (∼25%). Our new measurements disclose a concomitant shift in δ13C-CH4 of 1‰. Keeling plot analyses reveal the δ13C of the additional CH4 source constituting the CH4 anomaly as -56.8 ± 2.8‰, which we confirm by means of a previously published box model. We propose tropical wetlands as the most probable additional CH4 source during GI-21.2 and present independent evidence that suggests that tropical wetlands in South America and Asia have played a key role. We find no evidence that boreal CH4 sources, such as permafrost degradation, contributed significantly to the atmospheric CH4 increase, despite the pronounced warming in the Northern Hemisphere during GI-21.2

    Global-scale remote sensing of water isotopologues in the troposphere: representation of first-order isotope effects

    Get PDF
    Over the last decade, global-scale data sets of atmospheric water vapor isotopologues (HDO) have become available from different remote sensing instruments. Due to the observational geometry and the spectral ranges that are used, few satellites sample water isotopologues in the lower troposphere, where the bulk of hydrological processes within the atmosphere take place. Here, we compare three satellite HDO data sets, two from the Tropospheric Emission Spectrometer (TES retrieval version 4 and 5) and one from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY), with results from the atmospheric global circulation model ECHAM4 (European Centre HAMburg 4). We examine a list of known isotopologue effects to qualitatively benchmark the various observational data sets. TES version 5 (TESV5), TES version 4 (TESV4), SCIAMACHY, ECHAM, and ECHAM convolved with averaging kernels of TES version 5 (ECHAM(AK5)) successfully reproduced a number of established isotopologue effects such as the latitude effect, the amount effect, and the continental effect. The improvement of TESV5 over TESV4 is confirmed by the steeper latitudinal gradient at higher latitudes in agreement with SCIAMACHY. Also the representation of other features of the water isotopologue cycle, such as the seasonally varying signal in the tropics due to the movement of the Intertropical Convergence Zone (ITCZ), is improved in TESV5 and SCIAMACHY compared to TESV4. A known humidity bias due to the cross correlation of H2O and HDO measurements, which is of particular importance for instruments with low sensitivity close to the surface, was analyzed by applying either a humidity bias correction or a suitable a posteriori analysis. We suggest that the qualitative and quantitative tests carried out in this study could become benchmark tests for evaluation of future satellite isotopologue data sets

    H2 mixing ratio and isotope data from CARIBIC project

    No full text
    <div>This zip file contains the final corrected data that were used for the paper: Batenburg, A. M., Schuck, T. J., Baker, A. K., Zahn, A., Brenninkmeijer, C. A. M., and Röckmann, T.: The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft, Atmos. Chem. Phys., 12, 4633-4646, doi:10.5194/acp-12-4633-2012, 2012</div><div>Please cite this paper when using these data.</div><div>The paper also contains more information about how these data were collected and calibrated.</div><div><br></div><div>H2 and deltaD(H2) are calibrated using one, two, or three laboratory reference air cylinders, depending on measurement period.</div><div>The H2 mixing ratio of the reference cylinders was determined by UHEI-IUP or MPI-BGC.</div><div>The deltaD(H2) of the reference cylinders is linked to the VMOW scale by measurements of air mixtures containing H2 standards of known isotopic composition.</div><div>H2 scale: MPI2009, Jordan and Steinberg, AMT, 2011</div><div>deltaD(H2) units: permil deviation from VSMOW, Gonfiantini et al., IAEA-TECDOC-825, IAEA</div><div>An empirical correction was applied to the H2 mixing ratios based on data collected within the EUROHYDROS project.</div><div>H2 mixing ratio errors can be calculated as 2.5% of the mixing ratio divided by the square root of the number of GC-IRMS repeat measurements.</div><div>deltaD(H2) errors can be calculated as 4.5 permil divided by the square root of the number of GC-IRMS repeat measurements.</div><div>More information on the collection of these samples and their measurement can be found in Batenburg et al., ACP, 2012, doi:10.5194/acp-12-4633-2012.</div><div>More detailed information on the GC-IRMS measurement procedure can be found in Batenburg et al., ACP, 2011, doi:10.5194/acp-11-6985-2011.</div><div>The 0 or 1 pollution/outlier flags were assigned by an iterative procedure that is described Batenburg et al., 2012.</div><div><br></div><div>The zip file contains the data in .xls and .csv format, as well as in the NASA AMES text format that is used within the CARIBIC project.</div><div>We thank Armin Rauthe-Schöch for generating the AMES file.</div><div><br></div><div>The corresponding author of the paper can be reached through annekebatenburg you-know-what-symbol gmail.com for questions about the hydrogen measurements.</div><div>For the results of other measurements that were done on these samples (like the GHG measurements), it's better to contact someone involved with the CARIBIC/IAGOS database. Armin Rauthe-Schöch (armin.rauthe-schoech you-know-what-symbol mpic.de) can probably help you out.</div
    corecore